An application of Rouché's theorem

Statement of the theorem:

Suppose f and g are holomorphic in an open set containing a closed, simple curve γ and its interior. If |f(z)| > |g(z)| for all $z \in \gamma$, then f and f + g have the same number of zeros in the interior of γ

An application:

Let $f(z) = 2z^5 + 8z - 1$. All five zeros of f(z) are inside the disc |z| < 2 and exactly one zero is inside the disc |z| < 1

Proof: Let $g(z)=2z^5$ and let h(z)=8z-1. For |z|=2, $|g(z)|=|2z^5|=2|2^5|=64>17=8|2|+1$ = $|8z|+|-1|\geq |8z-1|=|h(z)|$. By Rouché's theorem, the number of zeroes of g(z) inside the disc |z|<2 (five, with multiplicity) equals the number of zeros of g(z)+h(z)=f(z)

For |z|=1, $|h(z)|=|8z-1|\geq |8z|-|1|=7>2=2|z^5|=|g(z)|$. Again, by Rouché's theorem, the number of zeroes of h(z) inside the disc |z|<1 (one) equals the number of zeros of g(z)+h(z)=f(z). \square