

An Introduction to P-orderings

Lori Watson

University of Georgia

Mock AMS 2015

Outline

- Motivation
- How P-ordering Works
- Properties of P -orderings
- Applications

Question: For which polynomials $f(x) \in \mathbb{Q}[x]$ will $f(\mathbb{Z}) \subseteq \mathbb{Z}$?

Question: For which polynomials $f(x) \in \mathbb{Q}[x]$ will $f(\mathbb{Z}) \subseteq \mathbb{Z}$?

Every polynomial in $\mathbb{Z}[x]$ will map \mathbb{Z} to \mathbb{Z} . But there are polynomials with non-integer coefficients that work as well, e.g. $g(x) = \frac{1}{2}x(x + 1)$

Question: For which polynomials $f(x) \in \mathbb{Q}[x]$ will $f(\mathbb{Z}) \subseteq \mathbb{Z}$?

Every polynomial in $\mathbb{Z}[x]$ will map \mathbb{Z} to \mathbb{Z} . But there are polynomials with non-integer coefficients that work as well, e.g. $g(x) = \frac{1}{2}x(x+1)$

Theorem (Pólya, 1915)

A polynomial $f \in \mathbb{Q}[x]$ of degree n maps \mathbb{Z} to \mathbb{Z} if and only if

$$f(x) = \sum_{k=0}^n a_k h_k(x),$$

where

$$a_k, \in \mathbb{Z}, \quad h_0(x) = 1, \quad \text{and} \quad h_k(x) = \frac{x(x-1) \cdots (x-(k-1))}{k!}$$

Question: For which polynomials $f(x) \in \mathbb{Q}[x]$ will $f(\mathbb{Z}) \subseteq \mathbb{Z}$?

Every polynomial in $\mathbb{Z}[x]$ will map \mathbb{Z} to \mathbb{Z} . But there are polynomials with non-integer coefficients that work as well, e.g. $g(x) = \frac{1}{2}x(x+1)$

Theorem (Pólya, 1915)

A polynomial $f \in \mathbb{Q}[x]$ of degree n maps \mathbb{Z} to \mathbb{Z} if and only if

$$f(x) = \sum_{k=0}^n a_k h_k(x),$$

where

$$a_k \in \mathbb{Z}, \quad h_0(x) = 1, \quad \text{and} \quad h_k(x) = \frac{x(x-1) \cdots (x-(k-1))}{k!}$$

In otherwords, the ring of integer-valued polynomials has a *regular basis* (i.e., a \mathbb{Z} -basis that has exactly one polynomial of degree n for every $n \geq 0$)

Given Pólya's result, it's natural to ask: Can the result be generalized, and if so, how?

For example, if D is a Dedekind domain with field of fractions K and an A is an arbitrary subset of D , does

$$\text{Int}(A, D) := \{f \in K[x] : f(A) \subseteq D\}$$

have a regular basis?

Given Pólya's result, it's natural to ask: Can the result be generalized, and if so, how?

For example, if D is a Dedekind domain with field of fractions K and an A is an arbitrary subset of D , does

$$\text{Int}(A, D) := \{f \in K[x] : f(A) \subseteq D\}$$

have a regular basis?

Manjul Bhargava answered this question by giving necessary and sufficient conditions for a regular basis for the ring $\text{Int}(A, D)$ to exist. To do so, he used the concept of *P-ordering*

How P -ordering works

- Start with a *Dedekind ring* R (a Noetherian, locally principal ring in which all nonzero prime ideals are maximal), and a non-empty subset $S \subseteq R$.
- Fix a nonzero prime ideal P .
- Choose any $a_0 \in S$.
- For $k \geq 1$, choose an element $a_k \in S$ that minimizes the highest power of P in which $\prod_{j=0}^k (a_k - a_j)$ appears.

Example: Let $R = \mathbb{Z}$ and $S = \{0, \dots, n\}$, the natural ordering $0, 1, 2, \dots, n$ works for any nonzero prime ideal (p) of \mathbb{Z} .

Example: Let $R = \mathbb{Z}$ and $S = \{0, \dots, n\}$, the natural ordering $0, 1, 2, \dots, n$ works for any nonzero prime ideal (p) of \mathbb{Z} .

Example: The natural ordering of the nonnegative integers forms a (p) -ordering of \mathbb{Z} for all primes p .

Example: Let $R = \mathbb{Z}$ and $S = \{0, \dots, n\}$, the natural ordering $0, 1, 2, \dots, n$ works for any nonzero prime ideal (p) of \mathbb{Z} .

Example: The natural ordering of the nonnegative integers forms a (p) -ordering of \mathbb{Z} for all primes p .

This follows by induction: Assume $0, \dots, k - 1$ is a (p) -ordering for the first $k - 1$ steps. For any a_k we choose,

$$(a_k - 0)(a_k - 1) \cdots (a_k - (k - 1))$$

is divisible by $k!$. The choice $a_k = k$ minimizes the highest power of p that divides this product for every prime p .

It is important to note that a P -ordering is not, in general, unique (we could take a_0 to be any element of S). But if we let $v_k(S, P)$ denote the highest power of P containing the product $(a_k - a_0) \cdots (a_k - a_{k-1})$ then the P -sequence of X ,

$$\{v_k(S, P)\}_{k=0}^{\infty}$$

is unique.

By convention, $v_0(S, P)$ is taken to be the unit ideal. If $(a_k - a_0) \cdots (a_k - a_{k-1}) = 0$, then $v_k(S, P)$ is the zero ideal.

Example: Let $R = \mathbb{Z}$ and let $p > 2$ be a prime number. Let $S = \{1, p, 2p, p^2, p^2 + 1\}$.

Example: Let $R = \mathbb{Z}$ and let $p > 2$ be a prime number. Let $S = \{1, p, 2p, p^2, p^2 + 1\}$.

The orderings $1, p, 2p, p^2, p^2 + 1$ and $1, p, p^2, p^2 + 1, 2p$ are both (p) -orderings of S , and they yield the same (p) -sequence:

$$(1), (1), (p), (p^2), (p^2), (0), (0), \dots$$

A generalized factorial function

Earlier we noted that $0, 1, 2, \dots$ is a (p) -ordering of \mathbb{Z} for all primes p . That is, to construct a (p) -ordering on \mathbb{Z} , we can choose the sequence $a_k = k$ for $k \geq 0$. Then for this (p) -ordering, we have

$$(a_k - a_0)(a_k - a_1) \cdots (a_k - a_{k-1}) = k(k-1) \cdots (1) = k!$$

This tells us that, for a given prime p , $v_k(\mathbb{Z}, (p))$ is keeping track of the highest power of p that divides $k!$. If we fix k , it's easy to see that

$$\prod_p v_k(\mathbb{Z}, (p)) = (k!)$$

This example inspires the following definition:

Definition (The k -th factorial of S)

$$k!_S = \prod_{P_{\text{prime}}} v_k(S, P)$$

This very useful generalization of the factorial turns out to be what was needed to answer the question Pólya posed.

Leveraging P -orderings and this generalized factorial, Bhargava was able to show

Theorem (Bhargava, 1997)

For a Dedekind domain D and a subset S of D , $\text{Int}(S, D)$ has a regular basis if and only if $k!_S$ is a principal ideal for all $k \geq 0$

In addition, he gave an explicit construction for such bases, thereby resolving Pólya's question completely and giving us a useful new tool in the study of integer-valued polynomials.

Thank You

References:

- M. Bhargava, *P*-orderings and polynomial functions on arbitrary subsets of Dedekind Rings, *J. reine Angew. Math.* **490** (1997), 101-127
- M. Bhargava, The factorial function and generalizations, *Amer. Math. Monthly* **107** (2000), 783-799.
- W. Narkiewicz, *Polynomial Mappings*, Springer-Verlag, Berlin 1995