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Abstract. Conditionally on the ABC conjecture, we show that a hyperelliptic curve C/Q of

genus at least three has infinitely many quadratic twists that violate the Hasse Principle iff it
has no Q-rational hyperelliptic branch points.

1. Introduction

Let C/Q be an algebraic curve. (All our curves will be nice: smooth, projective and geometrically
integral.) An involution ι on C is an order 2 automorphism of C/Q. For any quadratic field

Q(
√
d)/Q, there is a curve Td(C, ι)/Q, the quadratic twist of C by ι and Q(

√
d)/Q. After extension

to Q(
√
d) the curve Td(C, ι) is canonically isomorphic to C/Q(

√
d), but the Aut(Q(

√
d)/Q) = 〈σd〉

action on C(Q(
√
d)) is “twisted by ι”: σ : P ∈ C(Q(

√
d)) 7→ ι(σd(P )), and thus

Td(C, ι)(Q) = {P ∈ C(Q(
√
d)) | ι(P ) = σd(P )}.

If d ∈ Q×2 we put Td(C, ι) = C, the “trivial quadratic twist.”
Let q : C → C/ι be the quotient map. Every Q-rational point on Td(C, ι) maps via q to a Q-

rational point on C/ι. Let P ∈ C/ι(Q). If P a branch point of ι, then the unique point P ∈ C(Q)
such that q(P ) = P is also rational on every quadratic twist. If P is not a branch point of ι, there
is a unique d ∈ Q×/Q×2 such that the fiber of q : Td(C, ι)→ C/ι consists of two Q-rational points.

Work of Clark and Clark-Stankewicz [Cl08], [ClXX], [CS18] gives criteria on C and ι for there
to be infinitely many d ∈ Q×/Q×2 such that Td(C, ι)/Q violates the Hasse Principle: letting AQ
be the adele ring over Q, this means Td(C, ι)(AQ) 6= ∅ but Td(C, ι)(Q) = ∅. Here is one version.

Theorem 1. [CS18, Thm. 2] Let C/Q be a nice curve, and let ι be an involution on C. Suppose:
(T1) The involution ι has no Q-rational branch points.
(T2) The involution ι has at least one geometric branch point: {P ∈ C(Q) | ι(P ) = P} 6= ∅.
(T3) For some d ∈ Q×/Q×2 we have Td(C, ι)(AQ) 6= ∅.
(T4) The set (C/ι)(Q) is finite.
Then, as X →∞, the number of squarefree d with |d| ≤ X such that Td(C, ι)/Q violates the Hasse

Principle is �C
X

logX .

An involution ι on a curve C/Q is hyperelliptic if C/ι ∼= P1. A hyperelliptic curve is a pair (C, ι) with
ι a hyperelliptic involution on C. (A curve of genus at least two admits at most one hyperelliptic
involution.) A hyperelliptic curve (C, ι) of genus g has an affine model y2 = f(x) with f(x) ∈ Q[x]
squarefree of degree 2g+2 and ι : (x, y) 7→ (x,−y). The twist Td(C, ι) has affine model dy2 = f(x).
The branch points of ι are the roots of f in Q.1

If ι is a hyperelliptic involution then (C/ι)(Q) = P1(Q) is infinite, so (T4) is not satisfied. In
this note we give a conditional complement to Theorem 1 that applies to hyperelliptic curves.

1We have chosen a model in which the point at ∞ is not a branch point; this is always possible. There is a model
in which the point at ∞ is a branch point iff there is a Q-rational branch point.
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Theorem 2. Assume the ABC conjecture. For a hyperelliptic curve (C, ι) of genus g ≥ 3, the
following are equivalent:
(i) The hyperelliptic involution ι has no Q-rational branch points.
(ii) As X →∞, the number of squarefree integers d with |d| ≤ X such that Td(C, ι)/Q violates the

Hasse Principle is �C
X

logX .

(iii) Some quadratic twist Td(C, ι)/Q violates the Hasse Principle.

Certainly (ii) =⇒ (iii). As for (iii) =⇒ (i): if ι has a Q-rational branch point then this point
stays rational on every quadratic twist.

The crux is to show that (i) =⇒ (ii), which we will do in §2. In §3 we give upper and, in a
special case, lower bounds on the number of quadratic twists having adelic points locally, leading
to the conclusion that when hyperelliptic curves of genus g ≥ 3 are ordered by height, for 100%
of such curves the number of twists up to X that violate the Hasse Principle is o(X), but that
conditionally on ABC, there is a class of hyperelliptic curves for which the number of twists up to
X that violate the Hasse Principle is � X. Some final remarks are given in §4.

2. Proof of Theorem 2

2.1. Local.

Theorem 3. Let (C, ι)/Q be a hyperelliptic curve of genus g ≥ 1. If C(AQ) 6= ∅, then the set of
primes p ≡ 1 (mod 8) for which Tp(C, ι)(AQ) 6= ∅ has positive density.

Proof. For any place ` ≤ ∞ of Q, if p ∈ Q×2` then Tp(C, ι)/Q` ∼= C/Q` and thus Tp(C, ι)(Q`) 6= ∅.
In particular this holds for ` =∞. Henceforth ` denotes a prime number.

Let M1 ∈ Z+ be such that C extends to a smooth relative curve over Z` for all ` > M1. Such
an M1 exists for any nice curve C/Q by openness of the smooth locus. Since C is hyperelliptic, we
can take M1 to be the largest prime dividing its minimal discriminant.

Suppose ` > M := max(M1, 4g
2−1), ` 6= p and p /∈ Q×2` . Then the minimal regular model C/Z`

is smooth. We have Tp(C, ι)/Q`(√p) ∼= C/Q`(
√
p). Since Q`(

√
p)/Q` is unramified and formation of

the minimal regular model commutes with étale base change [L, Prop. 10.1.17] it follows that the
minimal regular model Tp(C, ι)/Z` is smooth. By the Riemann hypothesis for curves over a finite

field, since ` ≥ 4g2, we have Tp(C, ι)(F`) 6= ∅, so by Hensel’s Lemma we have Tp(C, ι)(Q`) 6= ∅.

Suppose ` ≤M and ` 6= p. If ` = 2, then p ∈ Q×2` because p ≡ 1 (mod 8). If ` is odd we require

that p is a quadratic residue modulo `, so again p ∈ Q×2` . Either way, Tp(C, ι)(Q`) = C(Q`) 6= ∅.

Suppose ` = p. Let P ∈ C(Q) be a hyperelliptic branch point. We assume that p splits
completely in Q(P ). Then P ∈ C(Qp) ∩ Tp(C, ι)(Qp).

All in all we have finitely many conditions on p, each of the form that p splits completely in a
certain number field. Taking the compositum of these finitely many number fields and its Galois
closure, say L, we see that if p splits completely in L then Tp(C, ι)(AQ) 6= ∅. By (e.g.) the
Chebotarev density theorem, this set of primes has positive density. �

2.2. Global.

Theorem 4. (Granville [Gr07, Cor. 1.2]) Assume the ABC conjecture. Let (C, ι)/Q be a hyperel-
liptic curve of genus g ≥ 3. The number of squarefree integers d with |d| ≤ X such that Td(C, ι)(Q)

has a point that is not a hyperelliptic branch point is �C X
1
g−1+o(1) �C X2/3.

2.3. Local-global. We now complete the proof of Theorem 2. Let (C, ι) be a hyperelliptic curve
of genus g ≥ 3 without Q-rational hyperelliptic branch points, so C has an affine model of the
form y2 = f(x) with f(x) ∈ Z[x] of degree 2g+ 2, with distinct roots in Q and no roots in Q. Put
d0 := f(1). Then (1, 1) is a Q-point on d0y

2 = f(x) and thus on Td0(C, ι). The involution ι remains
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Q-rational on Td0(C, ι) (cf. [CS18, §2.1]). We may thus apply Theorem 3 to the hyperelliptic curve
(Td0(C, ι), ι), getting a set of primes p ≡ 1 (mod 8) of density δ > 0 such that

Tpd0(C, ι)/Q = Tp(Td0(C, ι), ι)/Q

has points everywhere locally. By the Prime Number Theorem in Arithmetic Progressions, for at
least ( δd0 + o(1)) X

logX squarefree d with |d| ≤ X, we have Td(C, ι)(AQ) 6= ∅. By Theorem 4, we

have Td(C, ι)(Q) 6= ∅ for � X2/3 squarefree d with |d| ≤ X. So the number of squarefree d with
|d| ≤ X such that Td(C, ι)/Q violates the Hasse Principle is �C

X
logX .

3. Counting twists with adelic points

For a hyperelliptic curve (C, ι)/Q, let

UC = {squarefree d ∈ Z | Td(C, ι)(AQ) 6= ∅}
be the set of twists of C having points everywhere locally. For X ≥ 1, put

UC(X) = #(UC ∩ [−X,X]).

As we saw above, Theorem 3 gives UC(X)� X
logX .

Recall that a polynomial f ∈ Z[x] is intersective if it has roots modulo N for all N ∈ Z+, or
equivalently, in Zp for all primes p. We say a polynomial f ∈ Z[x] is weakly intersective if the
set of prime numbers p such that f has a root modulo p has density 1.

Remark 5. Suppose f = anx
n + . . .+ a1x+ a0 ∈ Z[x] has degree n ≥ 2, is weakly intersective and

has distinct roots in Q, with discriminant ∆. Let G be the Galois group of f .
For every prime number p - an∆, the partition of n given by the cycle type of a Frobenius

element σp at p coincides with the partition of n given by the degrees of the irreducible factors of
the image of f in Z/pZ[x]. Since f is weakly intersective, it follows from the Frobenius Density
Theorem (see e.g. [SL96, §3]) that every σ ∈ G has a fixed point and thus f has a root mod p for
all p - an∆, and thus by Hensel’s Lemma it has a root in Zp for all but finitely many p.

Since every σ ∈ G has a fixed point, it follows from the Cauchy-Frobenius(-“not Burnside”)
Lemma that f ∈ Q[x] is not irreducible.

Theorem 6. Let (C, ι)/Q be a hyperelliptic curve. Let y2 = f(x) be an affine equation for C with
f ∈ Z[x] squarefree of even degree.
a) If f is weakly intersective then UC(X)� X.
b) If f is not weakly intersective, let β be the density of the set of prime numbers p such that f
has no root modulo p, so β ∈ (0, 1).2 Then UC(X)� X

logβ X
.

Proof. Let ∆ be the discriminant of f .
Step 1: Suppose f ∈ Z[x] is weakly intersective. By Remark 5 f has a root in Zp for all but
finitely many p, and thus the set P of prime numbers p such that C(Qp) = ∅ is finite. For each
p ∈ P, we have Cd(Qp) 6= ∅ so long as d lies in the same Qp-adic square class as f(1). The set of
integers lying in a given Qp-adic square class is a nonempty union of congruence classes modulo p2

(if p > 2) or modulo 16 (if p = 2). Applying the Chinese Remainder Theorem, there are a,N ∈ Z+

such that if d ≡ a (mod N) then Td(C, ι)(Qp) 6= ∅ for all primes p. Finally, if f has a real root
then Td(C, ι)(R) 6= ∅ for all d; otherwise Td(C, ι)(R) 6= ∅ iff df(1) > 0. Thus UC(X) � X. (The
implied constant can be made explicit in terms of ∆.)
Step 2: Suppose f is not weakly intersective. Let E′ be the set of all squarefree integers d such
that for all primes p | d, either p | 2∆ or f has a root modulo p. Let E be the set of all squarefree
integers that do not lie in E′. Thus for all d ∈ E, there is an odd prime p | d such that the image

2The polynomial f has a root modulo every prime p that splits completely in the splitting field of f , so β > 0.
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of f in Z/pZ is squarefree and has no root modulo p. By a result of Sadek [Sa14, Cor. 4.2], this
implies that Td(C)(Qp) = ∅. It follows that

UC ⊂ E′.
Let E′(X) be the number of d ∈ E′ with |d| ≤ X. Then [Se76, Thm. 2.4] implies that if 0 < β < 1
then there is c > 0 such that E′(X) ∼ cX

logβ X
. �

We call a hyperelliptic curve (C, ι)/Q weakly intersective if it has a weakly intersective squarefree,

integral, even degree defining polynomial.3 Since no weakly intersective polynomial is irreducible,
when genus g hyperelliptic curves are ordered by height, 0% of them are weakly intersective.

Theorems 2 and 6 immediately imply the following:

Corollary 7. Let (C, ι)/Q be a hyperelliptic curve of genus g without Q-rational branch points.
a) If C is weakly intersective and g ≥ 3, then conditionally on ABC, as X → ∞ the number of
quadratic twists of (C, ι) that violate the Hasse Principle is � X.
b) If C is not weakly intersective, then as X → ∞, the number of quadratic twists of (C, ι) that
violate the Hasse Principle is o(X).

Example 8.
a) For any coprime, nonsquare integers a, b > 1, the polynomial (x2−a)(x2− b)(x2−ab) is weakly
intersective and without rational roots. The polynomial (x2− 2)(x2− 3)(x2− 6) is not intersective
– it has no root in Q2. The polynomial (x2 − 2)(x2 − 17)(x2 − 34) is intersective.
b) For any g ≥ 3, let h(x) ∈ Z[x] be monic of degree 2g − 4, without rational roots and such

that g(±
√

2), g(±
√

3), g(±
√

6) 6= 0. Then C/Q : y2 = 2(x2 − 2)(x2 − 3)(x2 − 6)h(x) is a weakly
intersective hyperelliptic curve of genus g ≥ 3 without Q-rational branch points. So conditionally
on ABC, a positive proportion of the quadratic twists of C violate the Hasse principle.
c) For every even n ≥ 2, there is a cyclic Galois extension F/Q of degree n, and there is a monic
polynomial f ∈ Z[x] such that Q[x]/(f) ∼= F . The hyperelliptic curve C/Q : y2 = 2f(x) has no

Q-rational branch points, genus n
2 − 1 and UC(X)� X

log1− 1
n X

.

4. Some Remarks

In [Gr07, Conj. 1.3], Granville conjectures that for all g ≥ 2, if f ∈ Z[x] has degree 2g+1 or 2g+2
and distinct roots in Q, then there is a constant κ′f > 0 such that the number of squarefree d with

|d| ≤ X such that dy2 = f(x) has a Q-point that is not a hyperelliptic branch point is ∼ κ′fX
1
g+1 .

The above arguments apply verbatim to show that conditionally on Granville’s conjecture, for all
g ≥ 2, a hyperelliptic curve C/Q has �C

X
logX twists that violate the Hasse principle iff C has no

Q-rational branch points. On the other hand, Vatsal has exhibited a genus one hyperelliptic curve
(C, ι)/Q for which a positive proportion of the quadratic twists have infinitely many rational points
[Va98]. Still, it may be true that every hyperelliptic curve of genus 1 without Q-rational branch
points has infinitely many twists that violate the Hasse Principle.

The present work should be compared to two other works that apply Theorem 1 (or its pre-
decessor [Cl08, Thm. 2]) and Faltings’ Theorem to get (unconditional) Hasse Principle violations.
Namely, Ozman [Oz12] works with the Atkin-Lehner involution wN on a modular curve X0(N) for
a prime N ≡ 1 (mod 4) and Clark-Stankewicz [CS18] works with the Atkin-Lehner involution wD
on a Shimura curve XD for a squarefree D > 1. Taking N > 131 (resp. D > 546) ensures that

3By Theorem 6, if one defining polynomial is weakly intersective, then all are.
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X0(N)/〈wN 〉 (resp. XD/〈wD〉) has genus at least 2 and thus finitely many Q-points. In each work
there is an analysis of UC(X), the number of twists up to X with adelic points. For modular curves
X0(N), Ozman shows that UC(X) ∼ CX

logγ X for a positive constant C and a γ ∈ [0, 1] determined

in terms of the class group of Q(
√
−N) [Oz12, Thm. 5.4] (and cf. [CS18, p. 2841, footnote 5]). In

the case of Shimura curves XD, Clark-Stankewicz show [CS18, Thm. 8] that

X

logαD X
� UXD (X)� X

logβD X

for constants 0 < βD < αD < 1 determined in terms of D, such that limD→∞ αD − βD = 0.
There is some overlap: for a finite nonempty set of N (resp. of D), the pair (X0(N), wN ) (resp.

(XD, wD)) is hyperelliptic. E.g. the pair (X0(41), w41) is hyperelliptic of genus 3 and [Oz12, loc.
cit.] gives UX0(41)(X) ∼ CX

log
11
16 X

. Similarly, the pair (X35, w35) is hyperelliptic of genus 3 and

[CS18, loc. cit.] gives X

log
15
16 X

� UX35(X)� X

log
11
16 X

.

It can be shown that for all hyperelliptic curves (C, ι)/Q, there is α = α(C) < 1 such that

UC(X) � X
logαX . In fact the same conclusion should hold for any (C, ι)/Q satisfying (T1), (T2)

and (T3) in Theorem 1, which amounts to a quantitative strengthening of the local part of this
result. We hope to return to this in a future work.

Recent work of Bhargava-Gross-Wang [BGW17] shows that for each fixed g ≥ 1, when genus
g hyperelliptic curves (C, ι)/Q are ordered by height, a positive proportion violate the Hasse Prin-
ciple. This work is unconditional; moreover, the positive proportion result should be contrasted
with Corollary 7b). On the other hand, since all quadratic twists of a hyperelliptic curve induce the
same point of the moduli space Hg of hyperelliptic curves of genus g, our result gives (conditionally
on ABC) Hasse Principle violations on the largest possible subset of Hg.
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Graduate Texts in Mathematics, 6. Oxford Science Publications. Oxford University Press, Oxford, 2002.

[Oz12] E. Ozman, Points on quadratic twists of X0(N). Acta Arith. 152 (2012), 323–348.
[Sa14] M. Sadek, On quadratic twists of hyperelliptic curves. Rocky Mountain J. Math. 44 (2014), 1015–1026.
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