

VARGA'S THEOREM IN NUMBER FIELDS

PETE L. CLARK AND LORI D. WATSON

ABSTRACT. We give a number field version of a recent result of Varga on solutions of polynomial equations with binary input variables and relaxed output variables.

1. INTRODUCTION

This note gives a contribution to the study of solution sets of systems of polynomial equations over finite local principal rings in the *restricted input / relaxed output* setting. The following recent result should help to explain the setting and scope.

Let $n, a_1, \dots, a_n \in \mathbb{Z}^+$ and $1 \leq N \leq \sum_{i=1}^n a_i$. Put

$$\mathfrak{m}(a_1, \dots, a_n; N) = \begin{cases} 1 & \text{if } N < n \\ \min \prod_{i=1}^n y_i & \text{if } n \leq N \leq \sum_{i=1}^n a_i \end{cases};$$

the minimum is over $(y_1, \dots, y_n) \in \mathbb{Z}^n$ with $1 \leq y_i \leq a_i$ for all i and $\sum_{i=1}^n y_i = N$.

Theorem 1.1. ([5, Thm. 1.7]) *Let R be a Dedekind domain, and let \mathfrak{p} be a maximal ideal in R with finite residue field $R/\mathfrak{p} \cong \mathbb{F}_q$. Let $n, r, v_1, \dots, v_r \in \mathbb{Z}^+$. Let $A_1, \dots, A_n, B_1, \dots, B_r \subset R$ be nonempty subsets each having the property that no two distinct elements are congruent modulo \mathfrak{p} . Let $r, v_1, \dots, v_r \in \mathbb{Z}^+$. Let $P_1, \dots, P_r \in R[t_1, \dots, t_n]$ be nonzero polynomials, and put*

$$z_{\mathbf{A}}^{\mathbf{B}} := \#\{x \in \prod_{i=1}^n A_i \mid \forall 1 \leq j \leq r \ P_j(x) \in B_j \pmod{\mathfrak{p}^{v_j}}\}.$$

Then $z_{\mathbf{A}}^{\mathbf{B}} = 0$ or

$$z_{\mathbf{A}}^{\mathbf{B}} \geq \mathfrak{m} \left(\#A_1, \dots, \#A_n; \sum_{i=1}^n \#A_i - \sum_{j=1}^r (q^{v_j} - \#B_j) \deg(P_j) \right).$$

Remark 1.2. For every finite local principal ring \mathfrak{r} , there is a number field K , a prime ideal \mathfrak{p} of the ring of integers \mathbb{Z}_K of K , and $v \in \mathbb{Z}^+$ such that $\mathfrak{r} \cong \mathbb{Z}_K/\mathfrak{p}^v$ [Ne71], [BC15]. Henceforth we will work in the setting of residue rings of \mathbb{Z}_K .

If in Theorem 1.1 we take $v_1 = \dots = v_r = 1$, $A_i = \mathbb{F}_q$ for all i and $B_j = \{0\}$ for all j , then we recover a result of E. Warning.

Theorem 1.3. (*Warning's Second Theorem* [Wa35])

Let $P_1, \dots, P_r \in \mathbb{F}_q[t_1, \dots, t_n]$ be nonzero polynomials, and let

$$\mathbf{z} = \#\{\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n \mid P_1(\mathbf{x}) = \dots = P_r(\mathbf{x}) = 0\}.$$

Then $\mathbf{z} = 0$ or $\mathbf{z} \geq q^{n - \sum_{j=1}^r \deg(P_j)}$.

By Remark 1.2, we may write \mathbb{F}_q as $\mathbb{Z}_K/\mathfrak{p}$ for a suitable maximal ideal \mathfrak{p} in the ring of integers \mathbb{Z}_K of a suitable number field K . Having done so, Theorem 1.3 can be interpreted in terms of solutions to a congruence modulo \mathfrak{p} , whereas Theorem 1.1 concerns congruences modulo powers of \mathfrak{p} . At the same time, we are *restricting* the input variables x_1, \dots, x_n to lie in certain subsets A_1, \dots, A_n and also *relaxing* the output variables: we do not require that $P_j(x) = 0$ but only that $P_j(x)$ lies in a certain subset B_j modulo \mathfrak{p}^{v_j} .

There is however a tradeoff: Theorem 1.1 contains the hypothesis that no two elements of any A_i (resp. B_j) are congruent modulo \mathfrak{p} . Thus, whereas when $v_j = 1$ for all j we are restricting variables *by choice* – e.g. we could take each A_i to be a complete set of coset representatives for \mathfrak{p} in \mathbb{Z}_K as done above – when $v_j > 1$ we are restricting variables *by necessity* – we cannot take A_i to be a complete set of coset representatives for \mathfrak{p}^{v_j} in \mathbb{Z}_K .

We would like to have a version of Theorem 1.1 in which the A_i 's can be any nonempty finite subsets of \mathbb{Z}_K and the B_j can be any nonempty finite subsets of \mathbb{Z}_K containing $\{0\}$. However, to do so the degree conditions need to be modified in order to take care of the “arithmetic” of the rings $\mathbb{Z}_K/\mathfrak{p}^{d_j}$. In general this seems like a difficult – and worthy – problem.

An interesting special case was resolved in recent work of L. Varga [Va14]. His degree bound comes in terms of a new invariant of a subset $B \subset \mathbb{Z}/p^{d_j}\mathbb{Z} \setminus \{0\}$ called the **price of B** and denoted $\text{pr}(B)$ that makes interesting connections to the theory of integer-valued polynomials.

Theorem 1.4. (Varga [Va14, Thm. 6]) *Let $P_1, \dots, P_r \in \mathbb{Z}[t_1, \dots, t_n] \setminus \{0\}$ be polynomials without constant terms. For $1 \leq j \leq r$, let $d_j \in \mathbb{Z}^+$, and let $B_j \subset \mathbb{Z}/p^{d_j}\mathbb{Z}$ be a subset containing 0. If*

$$\sum_{j=1}^r \deg(P_j) \text{pr}(\mathbb{Z}/p^{d_j}\mathbb{Z} \setminus B_j) < n,$$

then

$$\#\{\mathbf{x} \in \{0, 1\}^n \mid \forall 1 \leq j \leq r, P_j(\mathbf{x}) \in B_j \pmod{p^{d_j}}\} \geq 2.$$

In this note we will revisit and extend Varga's work. Here is our main result.

Theorem 1.5. *Let K be a number field of degree N , and let e_1, \dots, e_N be a \mathbb{Z} -basis for \mathbb{Z}_K . Let \mathfrak{p} be a nonzero prime ideal of \mathbb{Z}_K , and let $d_1, \dots, d_r \in \mathbb{Z}^+$. Let $P_1, \dots, P_r \in \mathbb{Z}_K[t_1, \dots, t_n]$ be nonzero polynomials without constant terms. For each $1 \leq j \leq r$, there are unique $\{\varphi_{j,k}\}_{1 \leq k \leq N} \in \mathbb{Z}[t_1, \dots, t_n]$ such that*

$$(1) \quad P_j(t) = \sum_{k=1}^N \varphi_{j,k} e_j.$$

For $1 \leq j \leq r$, let B_j be a subset of $\mathbb{Z}_K/\mathfrak{p}^{d_j}$ that contains 0 $(\bmod \mathfrak{p}^{d_j})$. Let

$$S := \sum_{j=1}^r \left(\sum_{k=1}^N \deg(\varphi_{j,k}) \right) \text{pr}(\mathbb{Z}_K/\mathfrak{p}^{d_j} \setminus B_j).$$

Then

$$\#\{\mathbf{x} \in \{0, 1\}^n \mid \forall 1 \leq j \leq r, P_j(\mathbf{x}) \pmod{\mathfrak{p}^{d_j}} \in B_j\} \geq 2^{n-S}.$$

Thus we extend Varga's Theorem 1.4 from \mathbb{Z} to \mathbb{Z}_K and refine the bound on the number of solutions.

In §2 we discuss the price of a subset of $\mathbb{Z}_K/\mathfrak{p}^d$. It seems to us that Varga's definition of the price has minor technical flaws: as we understand it, he tacitly assumes that for an integer-valued polynomial $f \in \mathbb{Q}[t]$ and $m, n \in \mathbb{Z}$, the output $f(n)$ modulo m depends only on the input modulo m . This is not true: for instance if $f(t) = \frac{t(t-1)}{2}$, then $f(n)$ modulo 2 depends on n modulo 4, not

just modulo 2. So we take up the discussion from scratch, in the context of residue rings of \mathbb{Z}_K .

The proof of Theorem 1.5 occupies §3. After setting notation in §3.1 and developing some preliminaries on multivariate Gregory-Newton expansions in §3.2, the proof proper occurs in §3.3.

2. THE PRICE

Consider the ring of **integer-valued polynomials**

$$\text{Int}(\mathbb{Z}_K, \mathbb{Z}_K) = \{f \in K[t] \mid f(\mathbb{Z}_K) \subset \mathbb{Z}_K\}.$$

We have inclusions of rings

$$\mathbb{Z}_K[t] \subset \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K) \subset K[t].$$

Let

$$\mathfrak{m}(\mathfrak{p}, 0) := \{f \in \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K) \mid f(0) \equiv 0 \pmod{\mathfrak{p}}\}.$$

Observe that $\mathfrak{m}(\mathfrak{p}, 0)$ is the kernel of a ring homomorphism $\text{Int}(\mathbb{Z}_K, \mathbb{Z}_K) \rightarrow \mathbb{Z}_K/\mathfrak{p}$: first evaluate f at 0 and then reduce modulo \mathfrak{p} . So $\mathfrak{m}(\mathfrak{p}, 0)$ is a maximal ideal of $\text{Int}(\mathbb{Z}_K, \mathbb{Z}_K)$. We put

$$\mathcal{U}(\mathfrak{p}, 0) := \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K) \setminus \mathfrak{m}(\mathfrak{p}, 0) = \{f \in \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K) \mid f(0) \notin \mathfrak{p}\}.$$

Let $d \in \mathbb{Z}^+$, and let B be a subset of $\mathbb{Z}_K/\mathfrak{p}^d$. We say that $h \in \mathcal{U}(\mathfrak{p}, 0)$ **covers** B if: for all $b \in \mathbb{Z}_K$ such that $b \pmod{\mathfrak{p}^d} \in B$, we have $h(b) \in \mathfrak{p}$. The **price of B** , denoted $\text{pr}(B)$, is the least degree of a polynomial $h \in \mathcal{U}(\mathfrak{p}, 0)$ that covers B , or ∞ if there is no such polynomial.

Remark 2.1. a) If B_1, B_2 are subsets of $\mathbb{Z}_K/\mathfrak{p}^d \setminus \{0\}$, then

$$\text{pr}(B_1 \cup B_2) \leq \text{pr}(B_1) + \text{pr}(B_2) :$$

If for $i = 1, 2$ the polynomial $h_i \in \mathcal{U}(\mathfrak{p}, 0)$ covers B_i and has degree d_i , then $h_1 h_2 \in \mathcal{U}(\mathfrak{p}, 0)$ covers $B_1 \cup B_2$ and has degree $d_1 + d_2$.

b) If $0 \pmod{\mathfrak{p}^d} \in B$, then $\text{pr}(B) = \infty$:

Since $0 \in B$ we need $h(0) \in \mathfrak{p}$, contradicting $h \in \mathcal{U}(\mathfrak{p}, 0)$.

c) If $d = 1$, then for any subset $B \subset \mathbb{Z}_K/\mathfrak{p} \setminus \{0\}$, we have $\text{pr}(B) \leq \#B$:

Let \tilde{B} be any lift of B to \mathbb{Z}_K . Then

$$h = \prod_{x \in \tilde{B}} (t - x) \in \mathbb{Z}_K[t] \subset \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K)$$

covers B and has degree $\#B$. Note that here we use polynomials with \mathbb{Z}_K -coefficients. It is clear that $\#B$ is the minimal degree of a covering polynomial h with \mathbb{Z}_K -coefficients: we can then reduce modulo \mathfrak{p} to get a polynomial in $\mathbb{F}_q[t]$ that we want to be 0 at the points of B and nonzero at 0, so of course it must have degree at least $\#B$.

d) If we assume no element of B is 0 modulo \mathfrak{p} , let \bar{B} be the image of B under the natural map $\mathbb{Z}_K/\mathfrak{p}^d \rightarrow \mathbb{Z}_K/\mathfrak{p} \cong \mathbb{F}_q$; then our assumption gives $0 \notin \bar{B}$. Above we constructed a polynomial $h \in \mathbb{Z}_K[t]$ of degree $\#\bar{B}$ such that $h(0) \notin \mathfrak{p}$ and for all $x \in \mathbb{Z}_K$ such that $x \pmod{\mathfrak{p}} \in B$, we have $h(x) \in \mathfrak{p}$. This same polynomial h covers B and shows that $\text{pr}(B) \leq \text{pr}(\bar{B}) \leq \#B$.

For $B \subset \mathbb{Z}_K/\mathfrak{p}^d \setminus \{0\}$ we define $\kappa(B) \in \mathbb{Z}^+$, as follows. For $1 \leq i \leq d$ we will recursively define $B_i \subset \mathbb{Z}_K/\mathfrak{p}^i \setminus \{0\}$ and $k_{i-1} \in \mathbb{N}$.

- Put $B_d = B$, and let k_{d-1} be the number of elements of B_d that lie in \mathfrak{p}^{d-1} .
- Having defined B_i and k_{i-1} , we let B_{i-1} be the set of $x \in \mathbb{Z}_K/\mathfrak{p}^{i-1}$ such that there are more than k_{i-1} elements of B_i mapping to x under reduction modulo \mathfrak{p}^{i-1} . We let k_{i-2} be the number of elements of B_{i-1} that lie in \mathfrak{p}^{i-2} .

Notice that $0 \notin B_i$ for all i : indeed, B_i is defined as the set of elements x such that the fiber under the map $\mathbb{Z}_K/\mathfrak{p}^{i+1} \rightarrow \mathbb{Z}_K/\mathfrak{p}^i$ has more elements of B_{i+1} than does the fiber over 0. We put

$$\kappa(B) := \sum_{i=0}^{d-1} k_i q^i.$$

Lemma 2.2. *We have $\kappa(B) \leq q^d - 1$.*

Proof. Each k_i is a set of elements in a fiber of a q -to-1 map, so certainly $k_i \leq q$. In order to have $k_i = q$, then B_{i+1} would need to contain the entire fiber over $0 \in \mathbb{Z}_K/\mathfrak{p}^i$, but this fiber includes $0 \in \mathbb{Z}_K/\mathfrak{p}^{i+1}$, which as above does not lie in B_{i+1} . So

$$\kappa(B) = \sum_{i=0}^{d-1} k_i q^i \leq \sum_{i=0}^{d-1} (q-1) q^i = q^d - 1. \quad \square$$

Theorem 2.3. *For any subset $B \subset \mathbb{Z}_K/\mathfrak{p}^d \setminus \{0\}$, we have $\text{pr}(B) \leq \kappa(B)$.*

Proof. Step 1: For $r \geq 1$, let $A = \{a_1, \dots, a_{q^{d-1}}\} \subset \mathbb{Z}_K/\mathfrak{p}^d$ be a complete residue system modulo \mathfrak{p}^{d-1} none of whose elements lie in \mathfrak{p}^d . We will show how to cover A with $f \in \mathcal{U}(\mathfrak{p}, 0)$ of degree q^{d-1} . We denote by $v_{\mathfrak{p}}$ the \mathfrak{p} -adic valuation on K . Let $\lambda \in \mathbb{Z}_K$ be an element with $v_{\mathfrak{p}}(\lambda) = \sum_{j=0}^{d-2} q^j$, and let $\beta \in \mathbb{Z}_K$ be an element such that $v_{\mathfrak{p}}(\beta) = 0$ and for all nonzero prime ideals $\mathfrak{q} \neq \mathfrak{p}$ of \mathbb{Z}_K , we have $v_{\mathfrak{q}}(\beta) \geq v_{\mathfrak{q}}(\lambda)$. (Such elements exist by the Chinese Remainder Theorem.) Put

$$g_A(t) := \prod_{j=1}^{q^{d-1}} (t - a_j) \in \mathbb{Z}_K[t], \quad h_A(t) := \frac{\beta}{\lambda} g_A(t) \in K[t].$$

For all $x \in \mathbb{Z}_K$, $\{x - a_1, \dots, x - a_{q^{d-1}}\}$ is a complete residue system modulo \mathfrak{p}^{d-1} , so in $\prod_{j=1}^{q^{d-1}} (x - a_j)$, for all $0 \leq j \leq d-1$ there are q^{d-1-j} factors in \mathfrak{p}^j , so $v_{\mathfrak{p}}(g_A(x)) \geq \sum_{j=0}^{d-2} q^j$ and thus $v_{\mathfrak{p}}(h_A(x)) \geq 0$. For any prime ideal $\mathfrak{q} \neq \mathfrak{p}$ of \mathbb{Z}_K , both $v_{\mathfrak{q}}(g_A(x))$ and $v_{\mathfrak{q}}(\frac{\beta}{\lambda})$ are non-negative, so $v_{\mathfrak{q}}(h_A(x)) \geq 0$. Thus $h_A \in \text{Int } \mathbb{Z}_K$. Moreover the condition that no a_j lies in \mathfrak{p}^d ensures that $v_{\mathfrak{p}}(g_A(0)) = \sum_{j=0}^{d-2} q^j$, so $h_A \in \mathcal{U}(\mathfrak{p}, 0)$. If $x \in \mathbb{Z}_K$ is such that $x \equiv a_j \pmod{\mathfrak{p}^d}$ for some j , then $v_{\mathfrak{p}}(x - a_j) \geq d$. Since in the above lower bounds of $v_{\mathfrak{p}}(g_A(x))$ we obtained a lower bound of at most $d-1$ on the \mathfrak{p} -adic valuation of each factor, this gives an extra divisibility and shows that $v_{\mathfrak{p}}(h_A(x)) \geq 0$. Thus h_A covers A with price at most q^{d-1} .

Step 2: Now let $B \subset \mathbb{Z}_K/\mathfrak{p}^d \setminus \{0\}$. The number of elements of B that lie in \mathfrak{p}^{d-1} is k_{d-1} . For each of these elements x_i we choose a complete residue system A_i modulo \mathfrak{p}^{d-1} containing it; since no x_i lies in \mathfrak{p}^d this system satisfies the hypothesis of Step 1, so we can cover each A_i with price at most q^{d-1} and thus (using Remark 2.1a)) all of the A_i 's with price at most $k_{d-1}q^{d-1}$. However, by suitably choosing the A_i 's we can cover many other elements as well. Indeed, because we are choosing k_{d-1} complete residue systems modulo \mathfrak{p}^{d-1} , we can cover every element x that is congruent modulo \mathfrak{p}^{d-1} to at most k_{d-1} elements of B . By definition of B_{d-1} , this means that we can cover all elements of B that do not map modulo \mathfrak{p}^{d-1} into B_{d-1} . Now suppose that we can cover B_{d-1} by $h \in \mathcal{U}(\mathfrak{p}, 0)$ of degree κ' . This means that for every $x \in \mathbb{Z}_K$ such that $x \pmod{\mathfrak{p}^{d-1}}$ lies in B_{d-1} , $h(x) \in \mathfrak{p}$. But then every element of B whose image in \mathfrak{p}^{d-1} lies in B_{d-1} is covered by h , so altogether we get

$$\text{pr}(B) \leq k_{d-1}q^{d-1} + \text{pr}(B_{d-1}).$$

Now applying the same argument successively to B_{d-1}, \dots, B_1 gives

$$\text{pr}(B_i) \leq k_{i-1}q^{i-1} + \text{pr}(B_{i-1})$$

and thus

$$\text{pr}(B) \leq \sum_{i=0}^{d-1} k_i q^i = \kappa(B). \quad \square$$

3. PROOF OF THE MAIN THEOREM

3.1. Notation. Let K be a number field of degree N , and let e_1, \dots, e_N be a \mathbb{Z} -basis for \mathbb{Z}_K . A \mathbb{Z} -basis for $\mathbb{Z}_K[t_1, \dots, t_n]$ is given by $e_j t^I$ as j ranges over elements of $\{1, \dots, N\}$ and I ranges over elements of \mathbb{N}^n . So for any $f \in \mathbb{Z}_K[t_1, \dots, t_n]$, we may write

$$(2) \quad f = \varphi_1(t_1, \dots, t_n)e_1 + \dots + \varphi_N(t_1, \dots, t_n)e_N, \quad \varphi_i \in \mathbb{Z}[t_1, \dots, t_n].$$

Then we have

$$\deg f = \max_i \deg \varphi_i.$$

For a subset $B \subset \mathbb{Z}_K/\mathfrak{p}^d$, we put

$$\overline{B} = \mathbb{Z}_K/\mathfrak{p}^d \setminus B.$$

3.2. Multivariable Newton Expansions.

Lemma 3.1.

If $f \in \mathbb{Q}[t]$ is a polynomial and $f(\mathbb{N}) \subset \mathbb{Z}$, then $f(\mathbb{Z}) \subset \mathbb{Z}$.

Proof. See e.g. [CC, p. 2]. \square

Theorem 3.2.

Let $f \in K[t]$.

a) There is a unique function $\alpha_{\bullet}(f) : \mathbb{N}^N \rightarrow K$, $\underline{r} \mapsto \alpha_{\underline{r}}(f)$ such that
 (i) we have $\alpha_{\underline{r}}(f) = 0$ for all but finitely many $\underline{r} \in \mathbb{N}^N$, and
 (ii) for all $x = x_1 e_1 + \dots + x_N e_N \in \mathbb{Z}_K$, we have

$$(3) \quad f(x) = \sum_{\underline{r} \in \mathbb{N}^N} \alpha_{\underline{r}}(f) \binom{x_1}{r_1} \cdots \binom{x_N}{r_N}.$$

b) The following are equivalent:

(i) We have $f \in \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K)$.
 (ii) For all $\underline{r} \in \mathbb{N}^N$, $\alpha_{\underline{r}}(f) \in \mathbb{Z}_K$.

We call the $\alpha_{\underline{r}}(f)$ the **Gregory-Newton coefficients** of f .

Proof. Step 1: Let $f \in K[t]$. Let e_1, \dots, e_N be a \mathbb{Z} -basis for \mathbb{Z}_K . We introduce new independent indeterminates t_1, \dots, t_N and make the substitution

$$t = \sum_{k=1}^N e_k t_k$$

to get a polynomial

$$\tilde{f} \in K[\underline{t}].$$

This polynomial induces a map $K^N \rightarrow K$ hence, by restriction, a map $\mathbb{Z}^N \rightarrow K$. For $\underline{x} = (x_1, \dots, x_N) \in \mathbb{Z}^N$, write $x = x_1 e_1 + \dots + x_N e_N \in \mathbb{Z}_K$. Then we have

$$\tilde{f}(\underline{x}) = f(x).$$

Let $\mathcal{M} = \text{Maps}(\mathbb{Z}^N, K)$ be the set of all such functions, and let \mathcal{P} be the K -subspace of \mathcal{M} consisting of functions obtained by evaluating a polynomial in $K[\underline{t}]$ on \mathbb{Z}^N , as above. By the CATS Lemma [Cl14, Thm. 12], the map $K[t] \rightarrow \mathcal{P}$ is an isomorphism of K -vector spaces. Henceforth we will identify $K[t]$ with \mathcal{P} inside \mathcal{M} .

Step 2: For all $1 \leq k \leq N$, we define a K -linear endomorphism Δ_k of \mathcal{M} , the **kth partial difference operator**:

$$\Delta_k(g) : x \in \mathbb{Z}^N \mapsto g(x + e_k) - g(x).$$

These endomorphisms all commute with each other:

$$(\Delta_i \circ \Delta_j)(g) = g(x + e_i + e_j) - g(x + e_j) - g(x + e_i) + g(x) = (\Delta_j \circ \Delta_i)(g).$$

Let Δ_k^0 be the identity operator on \mathcal{M} , and for $i \in \mathbb{Z}^+$, let Δ_k^i be the i -fold composition of Δ_k . For $I = (i_1, \dots, i_N) \in \mathbb{N}^N$, put

$$\Delta^I = \Delta^{i_1} \circ \dots \circ \Delta^{i_N} \in \text{End}_K(\mathcal{M}).$$

When we apply Δ_k to a monomial \underline{t}^I , we get another polynomial. More precisely, if $\deg_{t_k}(\underline{t}^I) = 0$ then $\Delta_k \underline{t}^I$ is the zero polynomial; otherwise

$$\deg_{t_k}(\Delta_k \underline{t}^I) = (\deg_{t_k} \underline{t}^I) - 1; \quad \forall l \neq k, \deg_{t_l}(\Delta_k \underline{t}^I) = \deg_{t_l} \underline{t}^I.$$

Thus for each $f \in \mathcal{P}$, for all but finitely many $I \in \mathbb{N}^N$, we have that $\Delta^I(f) = 0$.

For the one variable difference operator, we have

$$\Delta \binom{x}{r} = \binom{x+1}{r} - \binom{x}{r} = \binom{x}{r-1}.$$

From this it follows that for $I, \underline{r} \in \mathbb{N}^N$ we have

$$(4) \quad \Delta^I \left(\binom{x_1}{r_1} \cdots \binom{x_N}{r_N} \right) (\underline{0}) = \binom{0}{r_1 - i_1} \cdots \binom{0}{r_N - i_N} = \delta_{\underline{r}, I}$$

So if $\beta_\bullet : \mathbb{N}^N \rightarrow K$ is any finitely nonzero function then for all $I \in \mathbb{N}^N$ we have

$$(5) \quad \Delta^I \left(\sum_{\underline{r} \in \mathbb{N}^N} \beta_{\underline{r}} \binom{x_1}{r_1} \cdots \binom{x_N}{r_N} \right) (\underline{0}) = \beta_I,$$

and thus there is at most one such function satisfying (3), namely

$$\alpha_\bullet(f) : \underline{r} \mapsto \Delta^{\underline{r}}(f)(\underline{0}).$$

So for any $f \in \mathcal{M}$ and $\underline{r} \in \mathbb{N}^N$, we define the **Gregory-Newton coefficient**

$$\alpha_{\underline{r}}(f) := \Delta^{\underline{r}}(f)(\underline{0}) \in K.$$

We may view the assignment of the package $\{\alpha_{\underline{r}}(f)\}_{\underline{r} \in \mathbb{N}^N}$ of Gregory-Newton coefficients to $f \in \mathcal{M}$ as a K -linear mapping

$$\mathcal{M} \rightarrow K^{\mathbb{N}^N}.$$

If we put $\mathcal{M}^+ = \text{Maps}(\mathbb{N}^N, K)$, then we get a factorization

$$\mathcal{M} \rightarrow \mathcal{M}^+ \xrightarrow{\alpha} K^{\mathbb{N}^N},$$

where the first map restricts from \mathbb{Z}^N to \mathbb{N}^N , and the factorization occurs because the Gregory-Newton coefficients depend only on the values of f on \mathbb{N}^N . We make several observations:

First Observation: The map α is an isomorphism. Indeed, knowing all the successive differences at 0 is equivalent to knowing all the values on \mathbb{N}^N , and all possible packages of Gregory-Newton coefficients arise. Namely, let S_n be the assertion that for all $x \in \mathbb{N}^N$ with $\sum_k x_k = n$ and all $f \in \mathcal{M}$, then $f(x)$ is a \mathbb{Z} -linear combination of its Gregory-Newton coefficients. The case $n = 0$ is clear: $f(0) = \alpha_0(f)$. Suppose S_n holds for n , let $x \in \mathbb{N}^N$ be such that $\sum_k x_k = n + 1$, and choose k such that $x = y + e_k$; thus $\sum_k y_k = n$. Then

$$f(x) = f(y) + \Delta_k f(y).$$

By induction, $f(y)$ is a \mathbb{Z} -linear combination of the Gregory-Newton coefficients of f and $\Delta_k f(y)$ is a \mathbb{Z} -linear combination of the Gregory-Newton coefficients of $\Delta_k f$. But every Gregory-Newton coefficient of $\Delta_k f$ is also a Gregory-Newton coefficient of f , completing the induction.

Second Observation: The composite map

$$K[t] \rightarrow \mathcal{M} \rightarrow \mathcal{M}^+ \xrightarrow{\alpha} K^{\mathbb{N}^N}$$

is an injection. Indeed, the kernel of $\mathcal{M} \rightarrow K^{\mathbb{N}^N}$ is the set of functions that vanish on $\mathbb{Z}^N \setminus \mathbb{N}^N$. In particular, any element of the kernel vanishes on the infinite Cartesian subset $(\mathbb{Z}^{<0})^N$ and thus by the CATS Lemma is the zero polynomial.

Third Observation: For a subring $R \subset K$ and $f \in \mathcal{M}$, we have $f(\mathbb{N}^N) \subset R$ iff all of the Gregory-Newton coefficients of f lie in R . This is a consequence of the First Observation: the Gregory-Newton coefficients are \mathbb{Z} -linear combinations of the values of f on \mathbb{N}^N and conversely.

Step 3: For $F \in K[t]$, we define the **Newton expansion**

$$T(F) = \sum_{\underline{r} \in \mathbb{N}^N} \alpha_{\underline{r}}(F) \binom{t_1}{r_1} \cdots \binom{t_N}{r_N} \in K[t].$$

This is a finite sum. Moreover, by definition of $\alpha_{\underline{r}}(F)$ and by (5) we get that for all $r \in \mathbb{N}^N$,

$$\alpha_{\underline{r}}(T(F)) = \alpha_{\underline{r}}(F).$$

It now follows from Step 2 that $T(F) = F \in K[t]$. Applying this to the \tilde{f} associated to $f \in K[t]$ in Step 1 completes the proof of part a).

Step 4: If we assume that $f \in \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K)$ then $\tilde{f}(\mathbb{Z}^N) \subset \mathbb{Z}_K$ so all the Gregory-Newton coefficients lie in \mathbb{Z}_K . Conversely, if all the Gregory-Newton coefficients of \tilde{f} lie in \mathbb{Z}_K , then for $x = x_1 e_1 + \dots + x_N e_N \in \mathbb{Z}_K$, by Lemma 3.1 and (3) we have $f(x) = \tilde{f}(x_1, \dots, x_N) \in \mathbb{Z}_K$, so $f \in \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K)$. \square

3.3. Proof of Theorem 1.5. We begin by recalling the following result.

Theorem 3.3. *Let F be a field, and let $P \in F[t_1, \dots, t_n]$ be a polynomial. Let*

$$\mathcal{U} := \{\mathbf{x} \in \{0, 1\}^n \mid P(\mathbf{x}) \neq 0\}.$$

Then either $\#\mathcal{U} = 0$ or $\#\mathcal{U} \geq 2^{n-\deg(P)}$.

Proof. This is a special case of a result of Alon-Füredi [AF93, Thm. 5]. \square

We now turn to the proof of Theorem 1.5. Put

$$Z := \{x \in \{0, 1\}^n \mid \forall 1 \leq j \leq r, P_j(x) \pmod{\mathfrak{p}^{d_j}} \in B_j\}.$$

Step 0: If $q = \#\mathbb{Z}_K/\mathfrak{p}$ is a power of p , then we have $p^d \in \mathfrak{p}^d$. Therefore in (1) if we modify any coefficient of $\varphi_{j,k}(t)$ by a multiple of p^d , it does not change P_j modulo \mathfrak{p}^d and thus does not change the set Z . We may thus assume that every coefficient of every $\varphi_{j,k}$ is non-negative.

Step 1: For $w = \sum_{i=1}^k \underline{t}^{I_i}$ a sum of monomials and $0 \leq r \leq k$, we put

$$\Psi_r(w) := \sum_{1 \leq i_1 < i_2 < \dots < i_r \leq k} \underline{t}^{I_{i_1}} \cdots \underline{t}^{I_{i_r}}.$$

For $x \in \{0, 1\}^n$, we have $w(x) = \#\{1 \leq i \leq k \mid x^{I_i} = 1\}$, so

$$\Psi_r(w)(x) = \binom{w(x)}{r}.$$

For $f \in \mathbb{Z}_K[t_1, \dots, t_n]$, write $f = \sum_{k=1}^N \varphi_k(t) e_k$ and suppose that all the coefficients of each φ_k are non-negative – equivalently, each $\varphi_k(t)$ is a sum of monomials. For $\underline{r} \in \mathbb{N}^N$, we put

$$\Psi_{\underline{r}}(f) := \Psi_{r_1}(\varphi_1) \cdots \Psi_{r_N}(\varphi_N) \in \mathbb{Z}[t].$$

For $h \in \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K)$ with Gregory-Newton coefficients $\alpha_{\underline{r}}$, we put

$$\Psi^h(f) := \sum_{\underline{r} \in \mathbb{N}^N} \alpha_{\underline{r}} \Psi_{\underline{r}}(f) \in \mathbb{Z}_K[t].$$

For $x \in \{0, 1\}^n$, we have

$$\Psi_{\underline{r}}(x) = \prod_{k=1}^N \binom{\varphi_k(x)}{r_k},$$

so using (2) we get

$$\begin{aligned} \Psi^h(f)(x) &= \sum_{\underline{r}} \alpha_{\underline{r}} \Psi_{\underline{r}}(f)(x) = \sum_{\underline{r}} \alpha_{\underline{r}} \binom{\varphi_1(x)}{r_1} \cdots \binom{\varphi_N(x)}{r_N} \\ &= h(\varphi_1(x)e_1 + \cdots + \varphi_N(x)e_N) = h(f(x)). \end{aligned}$$

Step 2: For $1 \leq j \leq r$, let $h_j \in \text{Int}(\mathbb{Z}_K, \mathbb{Z}_K)$ have degree $\text{pr}(\overline{B_j})$ and cover $\overline{B_j}$. Put

$$F := \prod_{j=1}^r \Psi^{h_j}(P_j) \pmod{\mathfrak{p}} \in \mathbb{Z}_K/\mathfrak{p}[t] = \mathbb{F}_q[t].$$

Note that

$$\deg(F) \leq \sum_{j=1}^r \deg \Psi^{h_j}(P_j) \leq \sum_{j=1}^r \left(\deg(h_j) \sum_{k=1}^n \deg(\varphi_{j,k}) \right) = S.$$

Here is the key observation: for $x \in \{0, 1\}^n$, if $F(x) \neq 0$, then for all $1 \leq j \leq r$ we have $\mathfrak{p} \nmid \Psi^{h_j}(P_j)(x) = h_j(P_j(x))$, so $P_j(x) \pmod{\mathfrak{p}^{d_j}} \notin \overline{B_j}$, and thus $x \in Z$.

Step 3: For all $1 \leq j \leq r$ we have $P_j(0) = 0$ and $h_j \in \mathcal{U}(\mathfrak{p}, 0)$, so $h_j(0) \notin \mathfrak{p}$, so

$$F(0) = \prod_{j=1}^r \Psi_j^h(P_j(0)) = \prod_{j=1}^r h_j(P_j(0)) \pmod{\mathfrak{p}} = \prod_{j=1}^r h_j(0) \pmod{\mathfrak{p}} \neq 0.$$

Applying Alon-Füredi to F , we get

$$\#Z \geq \#\{x \in \{0, 1\}^n \mid F(x) \neq 0\} \geq 2^{n-\deg F} \geq 2^{n-S},$$

completing the proof of Theorem 1.5.

REFERENCES

- [AF93] N. Alon and Z. Füredi, *Covering the cube by affine hyperplanes*. Eur. J. Comb. 14 (1993), 79–83.
- [BC15] A. Brunyate and P.L. Clark, *Extending the Zolotarev-Frobenius approach to quadratic reciprocity*. Ramanujan J. 37 (2015), 25–50.
- [CC] P.-J. Cahen and J.-L. Chabert, *Integer-valued polynomials*. Mathematical Surveys and Monographs, 48. American Mathematical Society, Providence, RI, 1997.
- [CFS14] P.L. Clark, A. Forrow and J.R. Schmitt, *Warning’s Second Theorem with restricted variables*. Combinatorica 37 (2017), 397–417.
- [Cl14] P.L. Clark, *The Combinatorial Nullstellensätze Revisited*. Electronic Journal of Combinatorics. Volume 21, Issue 4 (2014). Paper #P4.15.
- [5] P.L. Clark, *Fattening up Warning’s Second Theorem*. http://alpha.math.uga.edu/~pete/Main_Theorem.pdf
- [Ne71] A.A. Nečaev, *The structure of finite commutative rings with unity*. Mat. Zametki 10 (1971), 679–688.
- [Va14] L. Varga, *Combinatorial Nullstellensatz modulo prime powers and the parity argument*. Electron. J. Combin. 21 (2014), no. 4, Paper 4.44, 17 pp.
- [Wa35] E. Warning, *Bemerkung zur vorstehenden Arbeit von Herrn Chevalley*. Abh. Math. Sem. Hamburg 11 (1935), 76–83.