VARGA’S THEOREM IN NUMBER FIELDS

PETE L. CLARK AND LORI D. WATSON

ABSTRACT. We give a number field version of a recent result of Varga on solutions of polynomial
equations with binary input variables and relaxed output variables.

1. INTRODUCTION

This note gives a contribution to the study of solution sets of systems of polynomial equations over
finite local principal rings in the restricted input / relazed output setting. The following recent
result should help to explain the setting and scope.

Let n,ai,...,a, € ZT and 1 < N < Y"  a;. Put

1 it N <n )
min[[,y fn<N<YT a

m(al,...7an;N):{

the minimum is over (y1,...,y,) € Z" with 1 <y, <aq; for all i and ) ;- ; y; = N.

Theorem 1.1. ([5, Thm. 1.7]) Let R be a Dedekind domain, and let p be a mazimal ideal in R
with finite residue field R/p = F,. Let n,r,v1,...,v, € Z*. Let Ay,...,An,B1,...,B, C R be
nonempty subsets each having the property that no two distinct elements are congruent modulo p.
Let r,vi,...,v. € Z%. Let Py,..., P, € R[t1,...,t,] be nonzero polynomials, and put

R=#{e e [[4i|¥1<j<m Pya) € B; (mod p*)}
=1

Then 28 =0 or

da > | #AL L H#HAG Y #A =Y (¢ — #B;) deg(P))

i=1 j=1

Remark 1.2. For every finite local principal ring t, there is a number field K, a prime ideal p of
the ring of integers Zg of K, and v € Z" such that v & Zg /p¥ [Ne71], [BC15]. Henceforth we will
work in the setting of residue rings of Zg.

If in Theorem 1.1 we take v; = --- = v, = 1, A; = F, for all i and B; = {0} for all j, then we
recover a result of E. Warning.

Theorem 1.3. (Warning’s Second Theorem [Wa35])
Let Pi,...,P. € Fy[t1,...,t,] be nonzero polynomials, and let

z=#{x=(v1,...,2,) €F} | Pi(x) =+ = P.(x) = 0}.

Thenz =0 orz > ¢" 2i=198(Fi)
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By Remark 1.2, we may write Fy as Zg /p for a suitable maximal ideal p in the ring of integers
Zy of a suitable number field K. Having done so, Theorem 1.3 can be interpreted in terms of
solutions to a congruence modulo p, whereas Theorem 1.1 concerns congruences modulo powers
of p. At the same time, we are restricting the input variables z1,...,z, to lie in certain subsets
Aq,..., A, and also relazing the output variables: we do not require that P;(z) = 0 but only that
P;(x) lies in a certain subset B; modulo p¥i.

There is however a tradeoff: Theorem 1.1 contains the hypothesis that no two elements of any
A; (resp. Bj) are congruent modulo p. Thus, whereas when v; = 1 for all j we are restricting
variables by choice — e.g. we could take each A; to be a complete set of coset representatives for p
in Zg as done above — when v; > 1 we are restricting variables by necessity — we cannot take A;
to be a complete set of coset representatives for p¥7 in Zg.

We would like to have a version of Theorem 1.1 in which the A4;’s can be any nonempty finite
subsets of Zx and the B; can be any nonempty finite subsets of Zx containing {0}. However, to
do so the degree conditions need to be modified in order to take care of the “arithmetic” of the
rings Zg /p%. In general this seems like a difficult — and worthy — problem.

An interesting special case was resolved in recent work of L. Varga [Val4]. His degree bound
comes in terms of a new invariant of a subset B C Z/p?Z\ {0} called the price of B and denoted
pr(B) that makes interesting connections to the theory of integer-valued polynomials.

Theorem 1.4. (Varga [Val4, Thm. 6]) Let Py, ..., P, € Z[t1,...,t,] \ {0} be polynomials without
constant terms. For 1 < j <r, letd; € Z*, and let B; C Z/p%Z be a subset containing 0. If

> deg(P;) pr(Z/pYZ\ B)) <n,
j=1

then
#{x €{0,1}"|V1<j<r, Pj(x) € B; (modp¥)}>2.

In this note we will revisit and extend Varga’s work. Here is our main result.

Theorem 1.5. Let K be a number field of degree N, and let eq,...,en be a Z-basis for Zy . Let
p be a nonzero prime ideal of Zk, and let di,...,d, € Z*. Let Py,...,P. € Zk|t1,...,tn] be
nonzero polynomials without constant terms. For each 1 < j <, there are unique {@;k}1<k<n €
Z[t1, ..., tn] such that

N
(1) Pi(t) =) @jke;-
k=1

For 1 <j <r, let B be a subset of Z /p% that contains 0 (mod p%). Let

r N
S=) ( deg(%’,k)) pr(Zx /p% \ Bj).
k=1

j=1 \k=

Then
#{x€{0,1}"|V1<j<r, Pj(x) (modp®)e B;}>2"5.

Thus we extend Varga’s Theorem 1.4 from Z to Z and refine the bound on the number of solutions.

In §2 we discuss the price of a subset of Zg /p?. It seems to us that Varga’s definition of the
price has minor technical flaws: as we understand it, he tacitly assumes that for an integer-valued
polynomial f € Q[t] and m,n € Z, the output f(n) modulo m depends only on the input modulo
m. This is not true: for instance if f(t) = @, then f(n) modulo 2 depends on n modulo 4, not
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just modulo 2. So we take up the discussion from scratch, in the context of residue rings of Zg.
The proof of Theorem 1.5 occupies §3. After setting notation in §3.1 and developing some
preliminaries on multivariate Gregory-Newton expansions in §3.2, the proof proper occurs in §3.3.

2. THE PRICE
Consider the ring of integer-valued polynomials
Int(Zk,Zk) ={f € K[t] | f(Zk) C Zk}.
We have inclusions of rings
Zilt) C Int(Zg,Zk) C K[t].
Let
m(p,0) ={f € nt(Zk,Zk) | f(0) =0 (mod p)}.

Observe that m(p,0) is the kernel of a ring homomorphism Int(Zy,Zx) — Zk /p: first evaluate f
at 0 and then reduce modulo p. So m(p,0) is a maximal ideal of Int(Zg,Z k). We put

U(p,0) =Int(Zr,Zr) \ m(p,0) = {f € Int(Zk,Zk) | f(0) ¢ p}.

Let d € Z*, and let B be a subset of Zg /p?. We say that h € U(p,0) covers B if: for all b € Zg
such that b (mod p?) € B, we have h(b) € p. The price of B, denoted pr(B), is the least degree
of a polynomial h € U(p,0) that covers B, or oo if there is no such polynomial.

Remark 2.1. a) If By, By are subsets of Zx /p?\ {0}, then
pr(By U By) < pr(By) + pr(B2) :

If for ¢ = 1,2 the polynomial h; € U(p,0) covers B; and has degree d;, then hihs € U(p,0) covers
Bi1 U By and has degree dy + ds.

b) If 0 (mod p?) € B, then pr(B) = oc:

Since 0 € B we need h(0) € p, contradicting h € U(p,0).

¢) If d = 1, then for any subset B C Zg /p \ {0}, we have pr(B) < #B:

Let B be any lift of B to Zx. Then

h=]t-2) € Zglt] c Int(Zx, Zx)

covers B and has degree #B. Note that here we use polynoimals with Zg-coefficients. It is clear
that #B is the minimal degree of a covering polynomial h with Z g -coefficients: we can then reduce
modulo p to get a polynomial in F[¢] that we want to be 0 at the points of B and nonzero at 0,
so of course it must have degree at least #B.

d) If we assume no element of B is 0 modulo p, let B be the image of B under the natural map
Zi/p? — Zx/p = F,; then our assumption gives 0 ¢ B. Above we constructed a polynomial
h € Zk[t] of degree #B such that h(0) ¢ p and for all x € Z such that x (mod p) € B, we have
h(x) € p. This same polynomial h covers B and shows that pr(B) < pr(B) < #B.

For B C Zk/p?\ {0} we define k(B) € Z*, as follows. For 1 < i < d we will recursively define
B; C ZK/pZ \ {0} and k;_1 € N.

e Put By = B, and let k41 be the number of elements of B, that lie in p¢—1.

e Having defined B; and k;_1, we let B;_; be the set of x € Z /p*~! such that there are more
than k;_; elements of B; mapping to = under reduction modulo p?~!. We let k;_» be the number
of elements of B;_; that lie in p*~2.
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Notice that 0 ¢ B; for all 4: indeed, B; is defined as the set of elements z such that the fiber
under the map ZK/]:F+1 — Zx /p; has more elements of B;11 than does the fiber over 0. We put

d—1
Kk(B) = Z kiq'.
=0

Lemma 2.2. We have x(B) < ¢% — 1.

Proof. Each k; is a set of elements in a fiber of a ¢-to-1 map, so certainly k; < g. In order to have
k; = q, then B;y; would need to contain the entire fiber over 0 € Zg /pi, but this fiber includes
0e ZK/pi“, which as above does not lie in B;;1. So

d—1 d-1
k(B) :Zkiqi < Z(qfl)qi =q¢¢ -1 O
=0 =0

Theorem 2.3. For any subset B C Zx /p? \ {0}, we have pr(B) < k(B).

Proof. Step 1: For r > 1, let A = {a1,...,a0-1} C Zx /p? be a complete residue system modulo
p?~! none of whose elements lie in p?. We will show how to cover A with f € U(p,0) of degree g?~1.
We denote by v, the p-adic valuation on K. Let A € Zg be an element with v,(\) = Zj;g ¢,
and let § € Zg be an element such that v,(8) = 0 and for all nonzero prime ideals q # p of Zg,

we have vq(f) > vq(A). (Such elements exist by the Chinese Remainder Theorem.) Put

qd*l
ga(t) = [[ (t - a5) € Ziclt], halt) = ggA(t) € K.
j=1
For all x € Zk, {r —a1,...,o — aga-1} is a complete residue system modulo p?~1 so in

?d:ll (z — a;), for all 0 < j < d — 1 there are ¢?~177 factors in p’, so vy(ga(z)) > Z?;Q ¢’ and
thus vp(ha(x)) > 0. For any prime ideal q # p of Zg, both vq(ga(z)) and vq(g) are non-negative,
0 vg(ha(z)) > 0. Thus hy € IntZg. Moreover the condition that no a; lies in p? ensures that
vp(9a(0)) = Z?;g ¢, 80 ha € U(p,0). If z € Z is such that z = a; (mod p?) for some j, then
vp(x — aj) > d. Since in the above lower bounds of v,(ga(x)) we obtained a lower bound of at
most d — 1 on the p-adic valuation of each factor, this gives an extra divisibility and shows that
vp(ha(x)) > 0. Thus hy covers A with price at most g1,

Step 2: Now let B C Zg/p?\ {0}. The number of elements of B that lie in p¢~1 is k4_;. For
each of these elements x; we choose a complete residue system A; modulo p¢~! containing it;
since no z; lies in p? this system satisfies the hypothesis of Step 1, so we can cover each A; with
price at most ¢~! and thus (using Remark 2.1a)) all of the A;’s with price at most kq_;q% .
However, by suitably choosing the A;’s we can cover many other elements as well. Indeed, because
we are choosing k4_; complete residue systems modulo p¢~!, we can cover every element z that is
congruent modulo p¢~! to at most k4, elements of B. By definition of B;_1, this means that we
can cover all elements of B that do not map modulo p?~! into By_;. Now suppose that we can
cover By_1 by h € U(p,0) of degree x’. This means that for every x € Zy such that z (mod p9—1)
lies in By_1, h(x) € p. But then every element of B whose image in p¢~! lies in By_; is covered
by h, so altogether we get

pr(B) < kg-1¢*"" + pr(Ba_1).

Now applying the same argument successively to By_1,..., By gives

pr(B;) < ki—1¢"' + pr(Bi—1)
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and thus

T
L

pr(B) < kiq' = k(B). O

%

Il
=)

3. PROOF OF THE MAIN THEOREM

3.1. Notation. Let K be a number field of degree N, and let eq,...,en be a Z-basis for Zx. A

Z-basis for Zk|[t1,...,t,] is given by e;t! as j ranges over elements of {1,..., N} and I ranges over
elements of N”. So for any f € Zklt1,...,t,], we may write
(2) f = 901(1517 - 7tn)€1 + ...+ (PN(tla . ,tn)eN, ©Y; € Z[th . ,tn]

Then we have
deg f = maxdeg p;.

For a subset B C Zx /p?, we put
B =Zx/p?\ B.

3.2. Multivariable Newton Expansions.

Lemma 3.1.
If f € Q[t] is a polynomial and f(N) C Z, then f(Z) C Z.

Proof. See e.g. [CC, p. 2. O

Theorem 3.2.

Let f € K|[t].

a) There is a unique function ae(f) : N¥ — K, 1+ a,(f) such that
(i) we have a-(f) = 0 for all but finitely many r € NV, and

(ii) for all x = x1e1 + ...+ zyen € Zk, we have

® @)= 3 ) () (),

b) The following are equivalent:

(i) We have f € Int(Zg,Zx).

(ii) For allr € NN, a,.(f) € Zk.

We call the o (f) the Gregory-Newton coefficients of f.

Proof. Step 1: Let f € KJt]. Let e1,...,en be a Z-basis for Zx. We introduce new independent

indeterminates tq,...,ty and make the substitution
N
t= Z thk
k=1
to get a polynomial
feKlt.
This polynomial induces a map KV — K hence, by restriction, a map Z¥ — K. For z =
(x1,...,2N5) € ZN, write x = 211 + ... + xyen € Zg. Then we have
f(z) = f(=).

Let M = Maps(Z",K) be the set of all such functions, and let P be the K-subspace of M
consisting of functions obtained by evaluating a polynomial in K[t] on ZV, as above. By the CATS
Lemma [Cl14, Thm. 12], the map K[t] — P is an isomorphism of K-vector spaces. Henceforth we
will identify K[t] with P inside M.
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Step 2: For all 1 < k < N, we define a K-linear endomorphism Ay of M, the kth partial
difference operator:

Ar(g) iz € ZN — g(x + ep) — g(x).

These endomorphisms all commute with each other:
(AioAj)(g) = g(x+ei+ej) —glz+ej) —gla+e)+g(x) = (40 A)(g).

Let A be the identity operator on M, and for i € Z*, let A% be the i-fold composition of Ay.
For I = (i1,...,in) € NV, put

Al =A% o, 0 A" € Endg(M).
When we apply Ay, to a monomial ¢/, we get another polynomial. More precisely, if deg,, thH =0
then Agt! is the zero polynomial; otherwise

degy, (Apt’) = (degy, t') — 15 VI # k,deg,, (Axt) = deg,, t'.

Thus for each f € P, for all but finitely many I € NV, we have that AL(f) = 0.
For the one variable difference operator, we have

()= ()00

From this it follows that for I,r € NV we have

@ Al ((iD (i§>> ©= (Tl Oil) (TN OiN) = On

So if B : NV — K is any finitely nonzero function then for all I € NV we have

5) ACE (1) (0 o =

reNnN "

and thus there is at most one such function satisfying (3), namely

ae(f) i = A(f)(0)-

So for any f € M and r € NV we define the Gregory-Newton coefficient

ar(f) = A%(f)(0) € K.
We may view the assignment of the package {a,(f)},en~ of Gregory-Newton coefficients to f € M
as a K-linear mapping
M — KN

If we put M+ = Maps(NV, K), then we get a factorization

M= MT S KN
where the first map restricts from Z~ to NV, and the factorization occurs because the Gregory-
Newton coefficients depend only on the values of f on N%. We make several observations:
First Observation: The map « is an isomorphism. Indeed, knowing all the successive differences
at 0 is equivalent to knowing all the values on NV and all possible packages of Gregory-Newton
coefficients arise. Namely, let S,, be the assertion that for all z € NV with Zk zr = n and all
f € M, then f(x) is a Z-linear combination of its Gregory-Newton coefficients. The case n = 0 is

clear: f(0) = ap(f). Suppose S, holds for n, let z € NV be such that >, zx =n + 1, and choose
k such that © =y + eg; thus ), yr = n. Then

f(x) = f(y) + Arf(y).
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By induction, f(y) is a Z-linear combination of the Gregory-Newton coefficients of f and Ay f(y)
is a Z-linear combination of the Gregory-Newton coefficients of A f. But every Gregory-Newton
coefficient of Ay f is also a Gregory-Newton coefficient of f, completing the induction.
Second Observation: The composite map

K[t] » M — M+ S gV

is an injection. Indeed, the kernel of M — KN" is the set of functions that vanish on ZV \ NV,
In particular, any element of the kernel vanishes on the infinite Cartesian subset (Z<°)" and thus
by the CATS Lemma is the zero polynomial.

Third Observation: For a subring R C K and f € M, we have f(N¥) C R iff all of the
Gregory-Newton coefficients of f lie in R. This is a consequence of the First Observation: the
Gregory-Newton coefficients are Z-linear combinations of the values of f on NV and conversely.
Step 3: For F € K|[t], we define the Newton expansion

t t
1) = ¥ o)) (1) e it
FENN ™ N

This is a finite sum. Moreover, by definition of a,.(F) and by (5) we get that for all » € NV,
ap(T(F)) = ap(F).

It now follows from Step 2 that T(F) = F € K[t]. Applying this to the f associated to f € K[t]

in Step 1 completes the proof of part a).

Step 4: If we assume that f € Int(Zg, Zx ) then f(ZN) C Zk so all the Gregory-Newton coefficents
lie in Zg. Conversely, if all the Gregory-Newton coefficients of f lie in Zg, then for z = z1e1+. ..+

ryen € Zg, by Lemma 3.1 and (3) we have f(z) = f(x1,...,2n) € Zk, so f € Int(Zk,Zgk). O
3.3. Proof of Theorem 1.5. We begin by recalling the following result.
Theorem 3.3. Let F be a field, and let P € Flty,...,t,] be a polynomial. Let
U:={xe{0,1}" | P(x) #0}.

Then either #U = 0 or #U > 2n—dee(P),
Proof. This is a special case of a result of Alon-Fiiredi [AF93, Thm. 5]. O
We now turn to the proof of Theorem 1.5. Put

Z ={rec{0,1}" |V1<j<r Pj(r) (modp®)c B;}.

Step 0: If ¢ = #Zx /p is a power of p, then we have p? € p?. Therefore in (1) if we modify any
coefficient of ¢; 1 (t) by a multiple of p?, it does not change P; modulo p? and thus does not change
the set Z. We may thus assume that every coefficient of every ¢, is non-negative.

Step 1: For w = Zle tli a sum of monomials and 0 < r < k, we put

U, (w) = Z tha oo glin

1<) <ig<...<i, <k
For z € {0,1}", we have w(z) = #{1 <i <k |zl =1}, so

v, (w)e) = ().

For f € Zk|t1,...,ts], write f = ngvzl vk (t)exr and suppose that all the coefficients of each ¢y,
are non-negative — equivalently, each ¢ (¢) is a sum of monomials. For r € NV we put

Ve (f) = Vr, (p1) - Yoy (on) € Z[E].
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For h € Int(Zk , Zk) with Gregory-Newton coefficients a,., we put

For x €

‘I’h(f) = Z O‘zlpz(f) € Zklt].

{0,1}", we have TGNATN
W, (x) = kl;[l <<P/;il"))

so using (2) we get

Step 2:

U (f)(2) = 3 ap W, (f) (@) = Zr:ar(wlr(lx)> (%v(ar))

r
- N

= h(pr(@)er + ... + on(x)en) = h(f(x)).
For 1 <j <r,let h; € Int(Zk, Zk) have degree pr(B;) and cover B;. Put

F:HWW%>mmmemwm:mm

Note that

Here is
ptwhi(

deg(F <Zdeg\11h Py) <> [ deg(hy) Y deg(pjx) | =S
j k=1

the key observatlon. for xz € {0,1}", if F(x) # 0, then for all 1 < j < r we have

P;)(z) = h;j(Pj(z)), so Pj(x) (mod p%) ¢ Bj, and thus x € Z.
Step 3:

For all 1 < j <r we have P;(0) =0 and h; € U(p,0), so h;(0) € p, so

=[] ¥"(P;(0)) = [ 1;(P;(0)) (mod p) H hj(0) (mod p) # 0
j=1 j=1

Applying Alon-Fiiredi to F', we get

#7 > #{x € {0,1)" | F(z) £ 0} > 2P > 9,

completing the proof of Theorem 1.5.
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