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Abstract

The second Euclid-Mullin sequence is an infinite sequence of primes which arises from a variation on
Euclid’s proof of the infinitude of primes. Booker showed this sequence omits infinitely many primes.
Pollack and Treviño showed the same thing with a completely elementary proof. We adapt the Pollack
and Treviño argument to show certain related sequences also omit infinitely many primes.

1 Introduction
One version of Euclid’s well-known proof of the infinitude of primes is as follows: Start with q1 = 2.

With a list of primes q1, . . . , qn−1 having been determined, the sequence is continued by choosing the nth
prime qn to be a prime divisor of 1 +

∏n−1
i=1 qi. Since 1 +

∏n−1
i=1 qi is relatively prime to the first n− 1 primes

in the sequence, at each step we find a new prime, and we conclude that there must be infinitely many
primes.

Note that at a given step, 1 +
∏n−1
i=1 qi may be composite, and as such there may be several choices for

qn. In 1963, Mullin [5] suggested generating the sequence {qi}∞i=1 by placing some restrictions on the choice
of qn. Rather than allowing any choice of prime divisor of 1 +

∏n−1
i=1 qi, one can require that the smallest

prime divisor be chosen. In this way, we obtain the first Euclid-Mullin sequence. Alternatively, one can
require that at each step the greatest prime divisor is chosen. This leads to the second Euclid-Mullin
sequence. For each sequence, Mullin asked whether every prime appears as a term in the sequence. In
the case of the first Euclid-Mullin sequence, this question is still open; in fact, it is unknown whether 41
appears as a term in the sequence.

For the second Euclid-Mullin sequence, much more is known. In 1967, Cox and van der Poorten [3]
showed that the second Euclid-Mullin sequence omits every prime p ≤ 53 besides 2, 3, 7, and 43, and they
conjectured that infinitely many primes are omitted by the sequence. In 2012, Booker [1] proved their
conjecture.

In their paper, Cox and van der Poorten showed that if certain primes appeared, the second Euclid-
Mullin sequence would satisfy an inconsistent system of congruences. In his proof, Booker used this same
essential idea to prove Cox and van der Poorten’s conjecture. In 2014 Pollack and Treviño [6] provided
an elementary version of Booker’s argument (again, based on an inconsistent system of congruences). It is
this more elementary argument we adapt below for certain Euclid-Mullin-like sequences. Specifically, we
construct sequences denoted EML(a, c; q), depending on a given prime q, a scaling factor c, and a "shift"
a, which omit infinitely many primes. We then construct a Euclid-Mullin-like sequence in the ring Z[i] and
attempt an adaptation of the Pollack and Treviño proof to this sequence.

2 Euclid-Mullin-Like sequences
To construct a Euclid-Mullin-like sequence, we proceed as follows: We fix integers a and c and a prime

q1 = q. Having chosen the first n − 1 primes of the sequence, we choose the nth prime to be the largest
prime divisor of a + c

∏n−1
i=1 qi. We refer to the sequence arising from these choices as the EML(a, c; q)

sequence. The second Euclid-Mullin sequence, for example, is the EML(1, 1; 2) sequence.
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2.1 The second Euclid-Mullin sequence
Theorem 2.1 (Booker). The EML(1, 1; 2) sequence omits infinitely many primes

Booker’s proof has two key components: one being quadratic reciprocity and the other a result on
upper bounds for certain character sums. Pollack and Treviño also use quadratic reciprocity, but they
exchange the bounds on character sums for simpler-to-prove statements about distributions of squares
and non squares modulo a prime. Their elementary proof of comes at the expense of worse quantitative
bounds. Since our work adapts the elementary argument, presumably each of the bounds given below
could be improved by using bounds on character sums.

3 EML sequences missing infinitely many primes
In this section, we present a full proof that the sequence EML(2, c; 3) omits infinitely many primes

when c is an odd positive integer. We then explain the changes needed to adapt the proof to other EML
sequences. To begin with, we state a lemma regarding quadratic residues and non residues.

Lemma 3.1 (Pollack and Treviño). If p is an odd prime, then the length of any sequence of consecutive
squares modulo p is strictly less than 2√p.

Theorem 3.2. The sequence EML(2, c; 3) misses infinitely many primes

The theorem is a consequence of the following proposition:

Theorem 3.3. Let q1 = 3 and let c be an odd positive integer. Let Q1, . . . , Qr be the smallest r primes
omitted from EML(2, c; 3) (we allow the possibility that r = 0, in which case Q1 · · · Qr is the empty
product). Then there is another omitted prime smaller than

X = 122
(

r∏
i=1

Qi

)2

.

Proof. Suppose by way of contradiction that every prime p ≤ X except Q1, . . . , Qr appears in the sequence.
Let p be the prime in [2, X] that is last to appear in the sequence {qi}, and say p is the nth term qn. Then
p is the largest prime dividing 2 + cq1 · · · qn−1. Since every prime smaller than p that is not one of the Qi
must be one of q1, . . . , qn−1, the only other possible prime factors of 2 + cq1 · · · qn−1 are Q1, . . . , Qr. So,

2 + cq1 · · · qn−1 = Qe1
1 Q

e2
2 · · ·Q

er
r p

e

for some exponents e1, . . . , er ≥ 0 and e ≥ 1. We claim that it is possible to choose a natural number
d ≤ X satisfying the following conditions

d ≡ 5 (mod 8), d ≡ 1 (mod Q1 · · ·Qr) (1)

and (
d

p

)
=
(

1
p

)
. (2)

Suppose such a d exists. Since d ≤ X and d is coprime to Q1 · · · Qrp, every prime dividing d is
among the primes q1, . . . , qn−1. So if we write d = d0d

2
1, where d0 is squarefree, then d0 | cq1 · · · qn−1 and

d0 ≡ 5(mod 8). Hence,
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(
d

2 + cq1 · · · qn−1

)
=
(

2 + cq1 · · · qn−1
d

)
=
(

2 + cq1 · · · qn−1
d0

)(
2 + cq1 · · · qn−1

d2
1

)

=
(

2
d0

)(
2 + cq1 · · · qn−1

d2
1

)
=
(

2
d0

)(
2 + cq1 · · · qn−1

d1

)2

= −1 · 1 = −1.

The first and fourth equality are each using that d ≡ 5 (mod 8). On the other hand, we also have(
d

Qi

)
=
(

1
Qi

)
for each i = 1, 2, . . . , r, and

(
d

p

)
=
(

1
p

)
by (2), so

(
d

2 + cq1 · · · qn−1

)
=
(

r∏
i=1

(
d

Qi

)ei)
·
(
d

p

)e

=
(

r∏
i=1

(
1
Qi

)ei)
·
(

1
p

)e

=
(

1
2 + cq1 · · · qn−1

)
= 1.

This is a contradiction.
We now establish that there is an integer d ≤ X satisfying (1) and (2). Condition (1) is satisfied for any

d = Mk+A, where M := 4Q1 · · ·Qr and A := 2Q1 · · ·Qr + 1 (though Q1 · · ·Qr may be the empty product
as noted earlier, in this case as 2 + cq1 · · · qn−1 is always odd, we take Q1 = 2). To obtain (2), we look for
a small nonnegative integer k with

(
Mk+A

p

)
=
(1
p

)
. Equivalently, fixing M ′ satisfying MM ′ ≡ 1 (mod p),

we seek a nonnegative integer k with (
k +AM ′

p

)
=
(
M ′

p

)
.

By Lemma 3.1 we know the longest run of quadratic residues or non residues is less than 2√p, so we can
find 0 ≤ k < 2√p. Then the corresponding d satisfies

0 < d = Mk +A < 2M√p+M < 3M√p ≤ 3M
√
X.

Since 3M= 12Q1 · · ·Qr =
√
X, we find that d < X, thus completing the proof.

Proposition 3.4. For a positive odd integer c and a positive integer j, the sequences EML(1, c; 2),
EML(1, 2c; 2),EML(−1, c; 2) and EML(−1, 2jc; 2) omit infinitely many primes.

Each of the above statements follows from propositions similar to Theorem 3.3. In what follows, we
make several conventions. First, Q1, . . . , Qr are the first r primes omitted by the sequence (where we again
allow r = 0). Second, for each sequence we assume p is the last prime in [2, X] to appear in the sequence
(say p is the nth term), where X is some integer depending on the sequence. Third, as q1 = 2, we assume
without loss of generality that n > 1 so that qn = p > 2 and we can freely use the Jacobi symbol to obtain
the necessary contradictions. The other changes needed for each of the proofs are provided below.

(a) For the sequence EML(1, c; 2), Pollack and Treviño’s proof works with only cosmetic changes. In place
of (1) and (2) we require d < X = 122 (

∏r
i=1Qi)

2 such that

d ≡ 1 (mod 4), d ≡ −1 (mod Q1 · · ·Qr) (3)
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and (
d

p

)
=
(
−1
p

)
. (4)

The conditions are then satisfied by an integer d = Mk +A where M := 4Q1 · · ·Qr, A := 2Q1 · · ·Qr − 1,
and k < 2√p.

(b) For the sequence EML(1, 2c; 2) we require d < X = 62 (
∏r
i=1Qi)

2 such that

d ≡ 2 (mod Q1 · · ·Qr) (5)

and (
d

p

)
=
(

2
p

)
. (6)

The conditions are satisfied by d = Mk + 2, where M := 2Q1 · · ·Qr and k < 2√p.

(c) For the sequence EML(−1, c; 2) we require d < X = 122 (
∏r
i=1Qi)

2 such that

d ≡ 3 (mod 4) d ≡ 1 (mod Q1Q2 · · ·Qr) (7)

and

(
d

p

)
=
(

1
p

)
, (8)

The conditions are satisfied by d = Mk +A, where M := 4Q1 · · ·Qr, A := 2Q1 · · ·Qr + 1 and k < 2√p.

(d) For the sequence EML(−1, 2jc; 2) we require d < X = 122 (
∏r
i=1Qi)

2 such that

d ≡ 1 (mod 4), d ≡ −1 (mod Q1Q2 · · ·Qr) (9)

and (
d

p

)
=
(
−1
p

)
. (10)

The conditions are satisfied by d = Mk +A, where M := 4Q1 · · ·Qr, A := 2Q1 · · ·Qr − 1 and k < 2√p.

4 Where Difficulties Arise
4.1 EML(1, 4; 2)

Suspiciously, we have proofs that the sequences EML(1, c; 2) and EML(1, 2c; 2) omit infinitely many
primes for c odd, but have not provided proofs that the sequences EML(1, 2jc; 2) omit infinitely many
primes for j > 1. It is in these cases that difficulties begin to arise. In the proofs given above, we arrive
at a contradiction by showing that for the denominator a+ cq1 · · · qn−1 and a carefully chosen numerator
d the Jacobi symbol is not well-defined. We do this by first flipping the symbol and considering only the
value of the Jacobi symbol on the square-free part of d and then by using the multiplicativity of the symbol
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to show that with the exact same numerator and denominator, the Jacobi symbol takes on the opposite
value. To achieve this contradiction, we must be able to show that either due to the shift a in the sequence
EML(a, c; q) and/or due to congruence conditions placed on d, the symbol

(
d

a+cq1···qn−1

)
will, when viewed

properly, return a value of −1.
If we look at the proof of Theorem 3.3, for example, we see that with the shift of a = 2 and the

condition that d (and hence the square-free part of d) is 5 (mod 8), the Jacobi symbol returns −1 after we
flip the symbol. We can then easily control congruence conditions to force the symbol to return 1 when
viewed differently. When we have a sequence EML(1, 2jc; 2), for j > 1, however, the argument breaks
down. In this case, since q1 = 2 and j > 1, we are ultimately considering how the Jacobi symbol behaves
when its denominator 1 + 2jcq1 · · · qn−1 is congruent to 1 modulo 8. Crucially, we need d to be small
enough so that all of its prime divisors are among the primes 2, q2, . . . , qn−1 and the primes dividing c.
If for such a d, we try to invert the symbol and then consider how it behaves we are forced to conclude
that

(
d

1+2jcq1···qn−1

)
=
( 1
d0

)
(d0 being the square free part of d), which is always 1, no matter what d0 is.

In the other direction, since 1 + 2jcq1 · · · qn−1 is 1 (mod 8), it is difficult to find a numerator ∗ so that( ∗
1+2jcq1···qn−1

)
is −1. This then hints at a limitation to the arguments used above: when working with the

sequence EML(a, c; q), if a is a square and a+ cq1 · · · qn−1 does not have any obvious non-square residue
classes, deriving a contradiction using the Jacobi symbol becomes harder. What, then, can be shown?

For EML(1, 4; 2), at least, we can show that not every prime appears in the sequence. To show this,
we start with the following lemma:

Lemma 4.1. If t = 1 + 4q1 · · · qn, then t 6= x4 for any x ∈ Z.

Proof. Suppose t = x4. Then 1 + 4q1 · · · qn = x4, so:
4q1 · · · qn = x4 − 1 = (x− 1)(x+ 1)(x2 + 1)

Since t is odd implies x is odd, each of x − 1, x + 1, x2 + 1 must be even. Since then either (x − 1) or
(x + 1) ≡ 0(mod 4), the right hand side is divisible by 24. But the left hand side is only divisible by 23

since q1 = 2 and the other primes are odd.

Proposition 4.2. The prime 7 does not appear in the sequence EML(1, 4; 2).

Proof. One can check that for this sequence, q2 = 3 and q3 = 5. Then since every prime less than 7 appears
as some qi, if 7 appears as the largest prime divisor of 1 + 4q1 · · · qn−1 for some n then 7 must be the only
prime divisor. So 1 + 4q1 · · · qn−1 = 7m for some m. Considering this equality (mod 5), we see that

1 + 4q1 · · · qn = 7m ≡ 2m (mod 5)
Since q3=5 we have

1 ≡ 2m (mod 5),
thus m ≡ 0 (mod 4). Therefore 1 + 4q1 · · · qn must be a fourth power, contradicting the lemma.

5 Beyond the Integers
Euclid’s proof that there are infinitely many primes works with minor changes in rings other than Z

(see for example [2]). One might hope that analogues of Euclid-Mullin-like sequences might arise in other
rings as well. To that end we next consider a Euclid-Mullin-like sequence in the ring of Gaussian integers
Z[i]. As when working over Z, we can consider sequences of prime elements in Z[i]. Other notions will need
to be reinterpreted for our new setting. When constructing our sequence and obtaining the nth prime, say
ω, we will need to choose among four associate primes (if ω is prime, then so are −ω and ±iω). We say an
integer α = a + bi ∈ Z[i], is odd if its norm N(α) = a2 + b2 is odd; we say an odd integer α is primary if
α ≡ 1 (mod (i+ 1)3). In our sequence, we will choose at each step the unique primary associate of a prime
ω. Rather than using quadratic reciprocity and the Jacobi symbol, we use biquadratic reciprocity and the
biquadratic residue symbol, which we review below. The biquadratic residue symbol is best understood
when dealing with primary integers; it is for this reason we choose the primary associate of a prime at each
step.
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5.1 Biquadratic Reciprocity
Biquadratic (or quartic) reciprocity is the appropriate tool to use in place of quadratic reciprocity when
working with prime elements in Z[i]. Rather than using the Jacobi symbol

(
a
n

)
to detect when an integer

a is a quadratic residue modulo an odd prime n ∈ Z, we use the biquadratic symbol
[
α
π

]
to detect wheter

an element α ∈ Z[i] is a biquadratic residue (i.e., fourth-power) modulo an odd prime π ∈ Z[i]. There is
a unique integer 0 ≤ k ≤ 3 such that α(N(π)−1)/4 ≡ ik (mod π) and

[
α
π

]
is defined to be ik. In particular,[

α
π

]
= 1 if and only if x4 − α has a solution modulo π. Below, we summarize relevant facts about primary

integers and biquadratic reciprocity, and extend the biquadratic symbol to arbitrary primary integers (see
[4]).

• We extend the symbol so that, if the numerator is kept fixed, then the symbol is totally multiplica-
tive.. That is, if β = πe1

1 · · · πenn , then [
α

β

]
=
[
α

π1

]e1

· · ·
[
α

πn

]en
.

• An element α = a + bi in Z[i] is primary if and only if either a ≡ 1 (mod 4) and b ≡ 0 (mod 4) or
a ≡ 3 (mod 4) and b ≡ 2 (mod 4).

• If α and β are primary, then αβ is primary.

• If α and β are primary and relatively prime non-units, then
[
α

β

]
=
[
β

α

]
· (−1)

N(α)−1
4

N(β)−1
4 .

• If θ and π are primary primes, then
[
θ

π

]
=
[
π

θ

]
whenever θ or π is ≡ 1 (mod 4).

• If β is a primary integer, then
[
1 + i

β

]
= i(Re(β)−Im(β)−Im(β)2−1)/4.

5.2 Conditional case of Euclid-Mullin-like Sequences in the Gaussian Integers
Definition 5.1. (EML for Z[i]) Let ω1 = 1 + i. Supposing ωj has been defined for 1 ≤ j ≤ n, continue the
sequence by choosing ωn+1 such that ωn is a primary prime of largest norm dividing 1 + 2ω1 · · · ωn−1. We
will call the sequence {ωn}∞n=1 the Euclid-Mullin-like (EML) sequence.

Remark 5.2. Throughout, we concern ourselves only with primary primes. We multiply ω1 · · · ωn−1 by 2
to ensure that 1 + 2ω1 · · · ωn−1 will be primary.

In both [1] and [6] a key fact used is that intervals of length small relative to p must contain both
integers which are quadratic residues modulo p and integers which are non-quadratic residues modulo p.
When working over Z[i] one might hope to prove that balls of small radius (small relative to the norm of a
prime π) contain both biquadratic residues and non-residues. Rausch [7] provides a theorem that implies a
result in this direction. His bounds on character sums in algebraic number fields can be used to prove that
for any ε ∈ {±1± i}, for a prime π ∈ Z[i], and for given α ∈ Z[i], there is some γ ∈ Z[i] in a ball of not-too-
large radius about α such that

[γ
π

]
= ε. To prove that certain Euclid-Mullin-like sequences in the Gaussian

integers miss infinitely many prime elements, a slightly stronger result is needed due to the possibility that
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Table 1: First terms in the Euclid-Mullin-like sequence for the Gaussian integers

ω1 1 + i

ω2 3 + 2i
ω3 3 + 10i
ω4 −93 + 50i
ω5 −827 + 120i
ω6 477839− 760062i
ω7 22662669− 40258594i
ω8 −3085230919875999− 807504660092300i

there may be two primes of largest norm dividing 1 + 2ω1 · · · ωn−1. To ensure that a contradiction can
be achieved regardless of the choice of a prime of largest norm, the following unproven hypothesis is needed.

[The Strong Close-By Hypothesis] There is a constant C such that for any prime π1 ∈ Z[i], for
any α ∈ Z[i], and for any fixed ε1, ε2 ∈ {±1,±i}, there is a γ ∈ Z[i] with N(γ−α) < CN(π1)1/2,

[ γ
π1

]
= ε1,

and
[ γ
π2

]
= ε2 (where π2 = π1).

The Strong Close-by Hypothesis is only slightly stronger than a result implied by Rausch which gives a
bound of N(γ − α) < CN(π1)1/2+δ for each δ > 0. Assuming the hypothesis, we prove the following
proposition.

Proposition 5.3. Let Q1, . . . , Qr be the smallest (in norm) r primes omitted from the sequence {ωn}∞n=1,
where r ≥ 0 and let X = (32C) ·N(Q1 · · ·Qr). Then there is another omitted prime Ω such that N(Ω) < X
and no associate of Ω is contained in {ωn}∞n=1 .

Proof of the proposition: Suppose by way of contradiction that every prime π withN(π) ≤ X except
Q1, . . . , Qr has an associate appearing in the EML sequence above. Let π be last prime to appear in the
sequence with N(π) ∈ [2, X], say π = ωn. Then π is a prime of largest norm dividing β = 1 + 2ω1 · · ·ωn−1.
If there is another prime of norm N(π) which is not associate to π, we denote it by π2 (note that in such
a case we have π2 = π). Since any prime with norm smaller than N(π) that is not one of the Qj is one
of ω1, . . . , ωn−1, the only possible factors of β are Q1, . . . , Qr, π2, π, so β = Qe1

1 · · · Qerr π
er+1
2 πe, where

e1, . . . , er, er+1 ≥ 0 and e ≥ 1.
We claim we can choose λ ∈ Z[i] with N(λ) ≤ X such that :

λ is primary (11)

λ ≡ 1 + i (mod Q1 · · ·Qr) (12)

and [
λ

π

]
=
[
1 + i

π

]
and

[
λ

π2

]
=
[
1 + i

π2

]
. (13)

Supposing for the moment this has been proved, since N(λ) ≤ X, and λ is coprime to Q1, . . . , Qr, π, π,
every prime dividing λ is among the primes ω1, . . . , ωn−1 (or an associate of one of the ωj ’s). Thus, if we
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write λ = λ0λ
2
1, with λ0 square free, then λ0|ω1 · · · ωn−1, so Biquadratic Reciprocity gives[

λ

β

]
=
[
β

λ

]
· (−1)

N(λ)−1
4

N(β)−1
4

=
[
β

λ0

]
·
[
β

λ2
1

]
· (−1)

N(λ)−1
4

N(β)−1
4

=
[

1
λ0

]
·
[
β

λ1

]2

= (1) · (±1) · (−1)
N(λ)−1

4
N(β)−1

4 ∈ {±1}.

On the other hand, for each j = 1, 2, . . . , r,
[
λ
Qj

]
=
[1+i
Qj

]
,
[
λ
π

]
=
[1+i
π

]
and

[
λ
π2

]
=
[1+i
π2

]
, so

[
λ

β

]
=

 r∏
j=1

[
λ

Qj

]ej · [ λ
π2

]er+1[
λ

π

]e
=

 r∏
j=1

[
1 + i

Qj

]ej · [1 + i

π2

]er+1[1 + i

π

]e
=
[
1 + i

β

]
.

Since ω2 · · · ωn−1 = a + bi is primary, we have that a is odd, b is even; then for β = 1 + 2ω1 · · · ωn−1
(recalling that ω1 = 1 + i), we have β = 1 + 2(1 + i)(a+ bi) = (1 + 2a− 2b) + i(2a+ 2b), so

Re(β)− Im(β)− Im(β)2 − 1
4 = 1 + 2a− 2b− (2a+ 2b)− (4a2 + 8ab+ 4b2)− 1

4 = −b− a2 − 2ab− b2,

which is odd, thus [
1 + i

β

]
= i(Re(β)−Im(β)−Im(β)2−1)/4 ∈ {±i}.

This is a contradiction.
It remains to show there is such λ ∈ Z[i] with N(λ) ≤ X satisfying (11), (12), and (13). By the Chinese

Remainder Theorem, we know there exists some A satisfying conditions (11) and (12). Then the conditions
are also satisfied by any λ = δM+A, whereM = Q1 · · ·Qr ·(1+ i)3 (where no Qi or associate of Q1 is equal
to 1 + i). Then finding a λ of sufficiently small norm relative to X satisfying condition (13) is equvialent
to finding δ of sufficiently small norm such that

[
δ+AM ′

π

]
=
[(1+i)M ′

π

]
,
[
δ+AM ′
π2

]
=
[(1+i)M ′

π

]
, where MM ′ ≡ 1

(mod π) and MM ′ ≡ 1 (mod π2) . By the hypothesis, there exists γ ∈ Z[i] such that
[γ
π

]
=
[(1+i)M ′

π

]
,[ γ

π2

]
=
[(1+i)M ′

π2

]
and N(γ − AM ′) ≤ CN(π)1/2. Letting δ := γ − AM ′, we have

[
δ+AM ′

π

]
=
[(1+i)M ′

π

]
; then

setting λ := δM +A (and noting that we can choose A with |A| < |M |), we have

√
N(λ) = |λ| = |δM +A| ≤ |δM |+ |A| < |δM |+ |M | < |M |(|δ|+ 1) = (

√
8 · |Q1 · · ·Qr|) · (|δ|+ 1)

≤ (
√

8 · |Q1 · · ·Qr|)(2|δ|) ≤ (2
√

8 · |Q1 · · ·Qr|) · (C1/2|π|1/2) ≤
√
X

1
2

√
X

1
2 = X1/2,

for X chosen to be large relative to N(Q1 · · ·Qr). Thus N(λ) < X, proving the claim. �
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