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Abstract. Conditionally on the abc conjecture, we generalize previous work of Clark and the
author to show that a superelliptic curve C : yn = f(x) of sufficiently high genus has infinitely
many twists violating the Hasse Principle if and only if f(x) has no Q-rational roots. We also show
unconditionally that a curve defined by C : ypN = f(x) has infinitely many twists violating the
Hasse Principle over any number field k such that k contains the pth roots of unity and f(x) has
no k-rational roots.

1. Introduction

Let k be a number field and C/k superelliptic curve1 (see Definition 1). The main result of
this work is that infinitely many twists2 of a superelliptic curve will violate the Hasse Principle
unless the existence of Q-rational roots of f or the degree of f guarantees a Q-rational point on
every twist.

Definition 1. Let n ≥ 2 be an integer and let k be a number field. A superelliptic curve C/k is a
nice curve admitting an affine model of the form yn = f(x), where f(x) ∈ k[x] factors over k̄ as

f(x) = A
r∏
j=1

(x− αj)nj ,

where A ∈ k̄∗, the αj are distinct, 1 ≤ nj < n for each j, and gcd(n, n1, . . . , nr) = 1.

Remark 2. As shown in [Ko91, Lemma 1], the condition gcd(n, n1, . . . , nr) = 1 guarantees that C
is geometrically irreducible.

Remark 3. When n = 2, the curve is hyperelliptic.

Over an algebraic closure k̄ of k, such a curve is equipped with an automorphism τ of order
n defined by τ(x, y) = (x, ζy), where ζ is a primitive nth root of unity. One especially interesting
feature of these curves is that their automorphism groups give rise to families of twists. In this
work, we consider twists Cd : dyn = f(x), where d is an nth power free integer. Though C and Cd
define the same geometric object, their arithmetic can be very different.

Example 4. The elliptic curve E : y2 = x3 + 7x has finitely many Q-rational points while some of
its quadratic twists have infinitely many, including E5 : 5y2 = x3 + 7x (see [Si97, P. 351]).

In Theorem 5 we show that if one assumes the abc conjecture, then a family of twists Cd of a
superelliptic curve C : yn = f(x) exhibits one of two behaviors: either there are no Hasse Principle
violations within the family of twists, or there are many. Follwing Mazur and Rubin ([MR]), for a
given family of twists we say that “many” curves in the family exhibit property P if the number
of twists Cd such that |d| ≤ X and Cd satisfies property P is � X/(logX)γ for some γ ∈ R. In
order for the family of twists to have infinitely many Hasse Principle violations (or indeed any),

1All curves are assumed to be nice: that is smooth, projective, and geometrically integral.
2Given a curve C defined over k, a twist of C is a curve C′ also defined over k such that C and C′ become

isomorphic over k̄.
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it is necessary that the map C → C/〈τ〉 ∼= P1 has no Q-rational branch points; assuming the abc
conjecture, we show that this condition is also sufficient. In particular, we show

Theorem 5. Assume the abc conjecture. Let C : yn = f(x) where n ≥ 2 is an integer and
f(x) ∈ Z[x] has distinct roots in Q̄ and deg(f) ≥ 4n−2

n−1 . Then the following are equivalent:
(i) The automorphism τ has no Q-rational fixed points.
(ii) There exists 0 ≤ γ < 1 such that as X →∞, the number of nth power free integers d
with |d| ≤ X such that Cd violates the Hasse Principle is �C

X

log(X)γ .

(iii) Some degree n twist Cd violates the Hasse Principle.

That (ii) implies (iii) is immediate. For (iii) implies (i), a Q-rational branch point of 〈τ〉 will
remain rational on every twist. Thus it remains to prove (i) implies (ii), which we do in Section
2. For this, we will require two results. The first is due to Granville ([Gr07]) and it provides
an upper bound on the number of twists that have so-called “nontrivial” Q-rational points. By
nontrivial, Granville means a point that is not a fixed point of the ‘superelliptic automorphism. In
the absence of any Q-rational branch points, Granville’s results provides an upper bound on the
number of twists which have any Q-rational points at all. The second result is a strengthening of
[CW18.2, Thm. 3]. It provides a lower bound on the number of twists of a curve that have points
everywhere locally (and in fact shows that there are many such twists).

This result generalizes Theorem 2 of [CW18.2], which proves the result when C is hyperelliptic.
In [KL19], König and Legrand recover the hyperelliptic result. They then extend the result to Galois
covers of P1/Q, that is, when the Galois group of Q(C)/Q(P1) contains in its center Z/nZ. We note
that this result of König and Legrand is separate from Theorem 5 except in the hyperelliptic case:
while the Galois group of Q̄(C)/Q̄(P1) does contain 〈τ〉 ∼= Z/nZ for a superelliptic curve C, such a
curve gives a Galois cover of P1/Q only when n = 2. It gives a Galois cover of P1

k if and only if k
contains the nth roots of unity. In that sense, we may think of superelliptic curves as geometrically
Galois covers of P1.

In Section 2 we give the proof of Theorem 5. In Section 3 we provide asymptotic bounds
for the number of Hasse Principle violations. In Section 4, we give unconditional results on Hasse
Principle violations over a number field containing pth roots of unity (where p is prime) for curves
of the form ypN = f(x).

2. Proof of the Main Result

In this section we prove the main result.
We begin by providing criteria for the existence of Hasse Principle violations within a family

of twists. A point P fixed under the action of the automorphism group 〈τ〉 is either a point lying
above ∞ or a point with y-coordinate 0. The quotient map C → C/〈τ〉 ∼→ P1 has a Q̄ branch
point above ∞ if and only if n - deg(f) with the ramification index of the point at infinity being
e = n/ gcd(n,deg(f)) ([Ko91]). A point P with y-coordinate 0 necessarily has as its x-coordinate
a root of the defining polynomial.

2.1. Bound on twists with nontrivial global points. The “global” step towards proving the
main theorem is a result due to Granville. This results provides an upper bound on the number
of twists with nontrivial Q-rational points. It relies on the abc theorem to bound the height of the
x-coordinate of a point that can appear on a twist Cd.

2.2. The abc conjecture. One of several equivalent statements of the abc conjecture over Q is as
follows ([Vo98, Conj. 2.4]):
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Conjecture 6 (abc Conjecture, Masser-Oesterlé). For each ε > 0, there exists a constant K
depending only on ε such that for all triples (a, b, c) of relatively prime integers with a+ b = c,

max (|a|, |b|, |c|) ≤ K(
∏

p prime
p|abc

p)1+ε,

The abc conjecture has numerous implications; most relevant to this work is that the abc
conjecture, if true, allows one to count the number of nth power-free values achieved by a polynomial
with integer coefficients.
Theorem 7 (Granville, [Gr07, §11]). Assume that the abc-conjecture is true. Fix ε > 0. Let
f(x) ∈ Z[x] have no repeated roots in Q̄. Let d ∈ Z be an nth power free integer. Any rational point
on Cd : dyn = f(x) with x-coordinate r/s where gcd(r, s) = 1 satisfies

|r|, |s| �f,ε |d|−
(
nk+i−1− gcd(n,i)+1

n−1

)
+ε,

where deg(f) = nk + i, 1 ≤ i ≤ n.
As a consequence, we conclude that as X →∞, the number of nth power free integers d with

|d| ≤ X for which Cd has a nontrivial rational point is �f X
2/
(
nk+i−1− gcd(n,i)+1

n−1

)
+ε

If 4n−2
n−1 < deg(f), then for sufficiently small ε > 0, the number of nth power free d ∈ Z with

|d| ≤ X such that Cd has a nontrivial rational point is Xa for some a < 1.

2.3. Bound on twists with points everywhere locally. With an eye towards eventually prov-
ing the main theorem for arbitrary number fields, in this section we prove that if a superelliptic
curve C has points everywhere locally, then many of its twists has points everywhere locally as well.

Lemma 8. Let C : yn = f(x) be a superelliptic curve of genus g ≥ 1 defined over a number field k.
Suppose C has points everywhere locally. For an element d ∈ Ok, let N(d) = |Ok/(d)|. As X →∞,
the number of non-associate elements π ∈ Ok such that N(π) ≤ X and Cπ has points everywhere
locally is �C,k X/ logX.

Proof : Let (π) = p / Ok denote a principal maximal ideal of Ok with π satisfying σ(π) > 0
for every real embedding σ : k ↪→ R. (These ideals are precisely those which split in the narrow
Hilbert Class Field of k, so by the finiteness of the class number they represent a positive density
set of the prime ideals of Ok, ([Ja96, §3])). For any place v of k, if π ∈ k∗nv , then Cπ ∼= C over kv.
Thus, if kv is any archimedean completion of k then Cπ ∼= C over kvand Cπ(kv) 6= ∅. From now on,
v will denote a finite place corresponding to a prime ideal Lv, Ov will denote the ring of integers
of kv, and F` the finite field with ` elements will denote the residue field of kv.

Let M1 ∈ Z+ be such that C extends to a smooth proper relative curve over Ov for every v
such that char(Lv) > M1. Such an M1 exists for any nice curve C/k by the openness of the smooth
locus.

Suppose char(Lv) > M := max{M1, 4g2 − 1, n}, Lv 6= p, and π 6∈ k∗nv . Then the minimal
regular model C/Ov is smooth. Fix an extension kv ( n

√
π) /kv which contains an nth root of π.

Over kv ( n
√
π), C ∼= Cπ. Since kv ( n

√
π) /kv is unramified for any choice of an nth root of π, and

formation of the minimal regular model commutes with étale base change ([Liu02, Prop. 10.1.17]),
it follows that the minimal regular model (Cπ)/Ov is smooth. By the Riemann hypothesis for curves
over a finite field ([Si97, Thm. V.2.2]), since ` ≥ 4g2, we have Cπ(F`) 6= ∅, so by Hensel’s Lemma
([Ca67]) we have Cπ(kv) 6= ∅.

Suppose now char(Lv) ≤ M and Lv 6= p. If the v-adic valuation of n is θ, then we require
p to split completely in k̃ = k(ζ`2θ+1), the compositum of k and Q(ζ`2θ+1). In that case we have
π ≡ 1 (mod `2θ+1); letting g(x) = xn − π, we then have |g(1)|v ≤ `−(2θ+1) < `−2θ = |g′(1)|2v, so by
Hensel’s lemma, there exists a unique u ∈ Zv such that g(u) = 0. Thus π is an nth root in kv, so
C/kv

∼= Cπ/kv , and Cπ(kv) 6= ∅.
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Now suppose Lv = p. Let P ∈ C(k̄) be a superelliptic branch point. We assume p splits
completely in K = k(P ). Then, if P is a prime of K lying above p, since p splits completely, the
completion KP has [KP : kp] = 1, thus K embeds into kp, and P ∈ Cπ(kp), so Cπ(kp) 6= ∅. We
have imposed finitely many conditions on p, each requiring that p splits completely in a certain
number field. Letting L be the Galois closure of the compositum of these finitely many number
fields, we have that Cπ has points everywhere locally whenever (π) = p splits completely in L. By
the Chebotarev density theorem ([LS96, Appendix]), this set of primes (which we will denote by
S and use in the next theorem) has positive density in the set of Ok primes. By Landau’s Prime
Ideal Theorem, the number of prime ideals p of Ok with Np ≤ X is asymptotic to X/ logX. �

In the case k = Q, having produced a positive density set of primes whose twists have points
everywhere locally, we can construct a larger set of nth power free integers d ∈ Z such that the
twists Cd have points everywhere locally.

Theorem 9. Let C : yn = f(x) be a superelliptic curve of genus g ≥ 1 defined over Q. Suppose C
has points everywhere locally. The number of nth power free integers d with |d| ≤ X such that Cd
has points everywhere locally is �C X/ log(X)γ for some 0 ≤ γ < 1.

Proof : Denote the set of primes p constructed in Lemma 8 by S. By construction this set
has density 0 < δ(S) < 1. Consider the set D consisting of nth power free integers d, all of whose
prime divisors are in S. If n is even we further require that all elements of D be positive. We will
show that for each d ∈ D, the twist Cd has points everywhere locally.

If n is even then as d > 0 and C(R) 6= ∅, we have Cd(R) 6= ∅. If n is odd or if f(x) has a real
root then Cd(R) 6= ∅ for every nonzero integer d.

Next, let M be as in Lemma 8, and let ` > M , ` - d. If d ∈ Q∗n` , then Cd is isomorphic to
C over Q`, thus Cd(Q`) 6= ∅. So assume d /∈ Q∗n` . Then Q`( n

√
d)/Q` is unramified, and as before

we conclude that the minimal regular model (Cd)/Z` is smooth. Then by the Riemann Hypothesis
for curves over a finite field, since ` ≥ 4g2, Cd(F`) 6= ∅, so by Hensel’s Lemma, we again have
Cd(Q`) 6= ∅.

For ` < M and ` - d, as d = pm1
1 · · · pmrr with pj ∈ Q∗n` for all 1 ≤ j ≤ r, d ∈ Q×n` , so Cd is

isomorphic to C over Q`, thus d(Q`) 6= ∅.
Finally, consider Cd(Qp), where p|d. Then p ∈ S. By construction, for each p ∈ S, p splits

completely in K = Q(P ) where P is a fixed point ofτ . As before, if P is a prime of K lying above
p, since p splits completely, the completion KP has [KP : Qp] = 1, thus K embeds into Qp. Since
P is a fixed point of τ , it is of the form P = (α, 0), where α is a root of the defining polynomial
f(x). Thus K = Q(α) ⊂ Qp. Then (α, 0) is a Qp-rational point of every degree n twist of C, so in
particular Cd(Qp) 6= ∅. Thus Cd. has points everywhere locally for each d ∈ D.

Let γ = 1− δ(S). By [Ser76, Thm 2.4], we have that the number of d ∈ D with |d| ≤ X such
that Cd has points everywhere locally is � X/ log(X)γ . �

2.4. Proof of the Main Theorem.
We now complete the proof of the main theorem.

Proof of 5: Let C : yn = f(x) be a superelliptic curve, where f(x) has coefficients in Z,
distinct roots in Q̄, no roots in Q, and deg(f) > (4n− 2)/(n− 1). If C does not have points
everywhere locally, write f(1) = d1d

n
2 where d1, d2 ∈ Z and d1 is nth power free. Then the

curve C ′ := Cd1 (with model d1y
n = f(x)) has the Q-rational point (1, d2) and hence has points

everywhere locally. Applying Theorem 9 to C ′, we have that the number of nth power free integers
d with |d| ≤ X such that the twist C ′d′ of C ′ with points everywhere locally is � X/ log(X)γ . As
the twist C ′d′ is a twist of the original curve C, we have that the number of nth power free integers
d with |d| ≤ X such that Cd has points everywhere locally is still �C X/ log(X)γ .
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By 7, we have that the number of nth power free d ∈ Z with |d| ≤ X such that Cd(Q) 6= ∅
is � X2/3. Thus the number of nth power free d with |d| ≤ X such that Cd violates the Hasse
Principle is �C X/ log(X)γ . �

3. Asymptotic Bounds

Assuming the abc conjecture, Theorem 5 shows that the existence of any (equivalently infinitely
many) Hasse Principle violations within a family of twists of a curve C : yn = f(x) depends on
the degree of f and whether f possesses any Q-rational roots. By more closely examining the local
behavior of f , we can provide more precise bounds on the number of twists violating the Hasse
Principle.

Let DC := {nth power free d ∈ Z : Cd has points everywhere locally}.
For X ≥ 1, put DC(X) = #DC ∩ [−X,X]. We saw in Thm 9, that DC(X) � X

log(X)γ for some
γ ∈ (0, 1). We will soon see that DC(X) (and hence the number of Hasse Principle violations for
C with no Q-rational branch points) depends on the density (within the set of all primes) of the
set S = {` prime : f(x) has a root modulo `}. For the hyperelliptic case n = 2, we can provide an
unconditional upper bound on the number of twists having points everywhere locally in terms of
the density δ of S. For n ≥ 2, when the density of S equals 1, we will show that, conditional on the
abc conjecture, a positive density set of twists have points everywhere locally. Before proceeding
we introduce some new terminology:

Definition 10. We say a polynomial f ∈ Z[x] is weakly intersective if δ = 1.

Theorem 11. Let C : yn = f(x) be a superelliptic curve with f(x) ∈ Z[x] squarefree and weakly
intersective. Then DC(X)�C X.

As an immediate consequence of Theorem 11 we have the following corollary:

Corollary 12. Let C : yn = f(x) be a superelliptic curve with f(x) ∈ Z[x] squarefree. If C has no
Q-rational superelliptic branch points and deg(f) > 5, then conditionally on the abc conjecture, as
X →∞, the number of degree n twists of C/Q that violate the Hasse Principle is �C X.

Remark 13. Before proving Theorem 11, we will first show that if f(x) is weakly intersective, then
the set of primes ` for which f(x) does not have a root (mod `) is finite. (This argument appears
in [CW18.2]). Let f(x) =

∑n
j=1 ajx

j ∈ Z[x] have degree n ≥ 2 and let ∆ be the discriminant of f .
Suppose f(x) has distinct roots in Q̄ and let G denote the Galois group of f .

For each prime ` - an∆, the partition of n given by the cycle type of a Frobenius element σ` at
` coincides with a partition of n given by the degrees of the irreducible factors of the image of f in
(Z/`Z)[x]. Since f(x) is weakly intersective, by the Frobenius Density Theorem ([LS96, §3]), every
σ ∈ G has a fixed point, and thus f has a root (mod `) for every ` - an∆. By Hensel’s Lemma,
f(x) has a root in Z` for all but finitely many `.

Proof of 11: By the remark above, if f is weakly intersective, then f has a root modulo ` for
all but finitely many ` and hence has a root in Z` for all but finitely many primes `. Therefore,
the set P of primes ` such that C(Q`) = ∅ is finite. For each ` ∈ P, we have Cd(Q`) 6= ∅ for
any d lying in the same Q`-adic nth power class as f(1). The set of integers lying in any given
Q`-adic nth power class is a nonempty union of congruence classes modulo `2v`(n) if ` is odd and
modulo 24v`(n) if ` = 2. By the Chinese Remainder Theorem there are a,N ∈ Z+ such that if d ≡ a
(mod N), then Cd(Q`) 6= ∅ for all primes `. A result of Prachar ([Pr58]) guarantees that there is
a positive density set of d ≡ a (mod N) which are squarefree (and thus nth power free), so long
as a ∈ (Z/NZ)∗. If f has a real root, then Cd(R) 6= ∅ for all nth power free d ∈ Z. Otherwise,
Cd(R) 6= ∅ ⇐⇒ df(1) > 0. In either case, DC(X) �f X. (The implied constant depends on the
discriminant of f .) �
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4. Unconditional Results

In this section, we provide an unconditional result on Hasse Principle violations in families of
twists of certain superelliptic curves which map to curves of sufficiently large genus and few points.
We prove a theorem, first stated in ([Cl08, Thm. 2]), to produce many twists which fail to have
k-rational points and thus, combined with Lemma 8 yield many Hasse Principle violations within
some families of twists.

Theorem 14. Let k be a number field containing the pth roots of unity where p is prime. Let
C/k be a smooth, projective, geometrically integeral curve, and let ψ : C −→ C be a k-rational
automorphism of order p. Assume the following hold:

(i) {P ∈ C(k) : ψ(P ) = P} = ∅.
(ii) {P ∈ C(k̄) : ψ(P ) = P} 6= ∅.
(iii) For some extension L = k

(
d1/p

)
, the twist Cd has points everywhere locally.

(iv) The set (C/〈ψ〉)(k) is finite.
Then for all but finitely many d, the twisted curve Cd has no k-rational points.

Proof : Let L/k be a cyclic degree p extension. As k contains the pth roots of unity, by
Kummer Theory, L = k

(
d1/p

)
, for some pth power free d ∈ k. Let Y := YL be the twist of C by

ψ with respect to L/k. Then ψ defines a k-rational automorphism on Y . Let θ : Gk −→ Aut(C)
be the 1-cocycle corresponding to the twist Y . For a generator σ of the Galois group of L/k, we
have θ(σ) = ψj for some j = jσ ∈ (Z/pZ)∗. We have that Y/L ∼= C/L, and σ acts on Y (L) by
σ∗(P ) = ψjσ(P ). Thus, for all P ∈ Y (A) (for any k-algebra A) we have

σ∗ψ(σ∗)−1 = (ψjσ)ψ(ψjσ)−1 = (ψjσ)ψ(σ−1ψ−j) = ψj(σψσ−1)ψ−j = ψjψψ−j = ψ .
We have natural maps

κ : YL(k) ↪→ C(L)
and

λ : C(L)→ (C/〈ψ〉)(L)
so that

SL := (λ ◦ κ)(YL(k)) ⊆ (C/〈ψ〉)(k) and (C/〈ψ〉)(k) = ψ(C(k)) ∪
⋃
L=k(d1/p) SL.

For distinct degree p extensions of k, L1 and L2, P ∈ SL1 ∩ SL2 =⇒ P ∈ C(L1) ∩ C(L2) = C(k)
(since [Li : k] is prime and the extensions are distinct, L1 ∩ L2 = k). If P ∈ SL ∩ C(k), then
P = λ(κ(Q)) for some Q ∈ YL(k). As λ(κ(Q)) ∈ (C/〈ψ〉)(L), P is a fixed point of ψ, but by
hypothesis, no such points are k-rational. Thus SL1 ∩SL2 = ∅ and (C/〈ψ〉)(k) is a disjoint union of
the SL. Since (C/〈ψ〉)(k) is finite, we conclude that there are only finitely many twists YL which
have k-rational points. �

Corollary 15. Let C : yn = f(x) be a superelliptic curve defined over a number field k with no k-
rational superelliptic fixed points. Suppose n = pN with 1 < N < n and p prime, and that k contains
the pth roots of unity. Let N(d) := |Ok/(d)| denote the norm of d. Suppose that Aut(C/k̄) ∼= µn
and that the curve C(N) : yN = f(x) has finitely many k-rational points. Then as X → ∞ the
number of N th power free d ∈ Ok such that Cd violates the Hasse Principle is �C

X
log(X) . In

particular, if the genus g(C(N)) ≥ 2 or if C(N) is an elliptic curve with finite Mordell-Weil rank
over k, then C has many twists violating the Hasse Principle.

Proof : We assume without loss of generality that C has points everywhere locally over k.
From Lemma 8, there is a set of non-associate, totally positive prime elements π ∈ Ok such that
Cπ has points everywhere locally. We consider now the twists Cd where d = πp. As before, there
is M ∈ Z+ (depending on n and the genus and discriminant of C) such that for every prime ideal
Lv 6= (π), with NLv > M , Cd(kv) 6= ∅ (where v is the finite place correspdoning to Lv, and kv the
completion of k at v). For Lv 6= (π) with NLv ≤ M , π, and hence d is an nth power in kv, thus
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C/kv
∼= (Cd)/kv , so (Cd)/kv 6= ∅. Finally, for Lv = (π), by construction kv contains a root of f(x),

and so (Cd)/kv 6= ∅ for every twist of C.
We take for 〈ψ〉 in Theorem 14 the unique subgroup of order p in Aut(C/k̄). Then (C/〈ψ〉) ∼=

C(N). By Theorem 14, only finitely many of the degree p-twists Cd, d = πp have k-rational points.
�

4.1. Examples of the unconditional result. Examples satisfying the hypotheses of Cor 15
include hyperelliptic curves of the form y2 = x2` − A, where ` ≥ 5 (or ` = 3, 4 and the genus 1
curve y2 = x` − A has finitely many k-rational points) and A is not an 2`th power in k. In such
cases, y2 = x` −A has finitely many points, so by Thm. 14, only finitely many quadratic twists of
y2 = x2` −A (with respect to the automorphism τ(x, y) = (x, ζ`y)) have k-rational points.

Additional examples include superelliptic curves defined by y4 = f(x) where deg(f) = 2m > 4
(or deg(f) = 4 and y2 = f(x) is of genus 1 and has only finitely many points k-rational points) and
f(x) ∈ k[x] has no k-rational roots. As the hyperelliptic curve y2 = f(x) has only finitely many
rational points, there are only finitely many quadratic twists corresponding to the automorphism
(x, y2) 7→ (x,−y2) which have k-rational points.
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